

Product Catalogue

Megazyme Test Kits and Reagents **Purity. Quality. Innovation.**

Barry V. McCleary, PhD, DScAgr

Innovative test methods with exceptional technical support and customer service. **The Megazyme Promise.**

Megazyme was founded in 1988 with the specific aim of developing and supplying innovative test kits and reagents for the cereals, food, feed and fermentation industries. There is a clear need for good, validated methods for the measurement of the polysaccharides and enzymes that affect the quality of plant products from the farm gate to the final food.

The commitment of Megazyme to "Setting New Standards in Test Technology" has been continually recognised over the years, with Megazyme and founder, Dr McCleary receiving a number of business and scientific awards.

Today, Megazyme is a recognised world leader in the development of high quality, innovative test technology for many industries and offers the complete toolbox for all aspects of carbohydrate research. Over 500 products are available, 80% of which are unique to Megazyme and these are spread across five main categories; Assay kits, Enzymes, Enzyme Substrates, Carbohydrates and Equipment.

Megazyme has its research and manufacturing facilities in Bray, Ireland. Exports account for over 98% of sales with Megazyme currently shipping to 90 countries spread across every continent. To provide the best customer experience possible, we offer worldwide express delivery with time-stamped tracking on all of our orders and any technical queries on our products are answered by our scientist within 48 hours.

All products can be ordered at www.megazyme.com and our website also acts as the ultimate information resource for all Megazyme products. Customers can download a data booklet for every assay kit that outlines clear step-by-step instructions for their use. Data booklets for other product classes contain detailed physico-chemical information from pH and temperature stability ranges for enzymes to NMR spectra and HPLC/IC chromatograms of enzyme substrates or carbohydrates. Product specific Mega-Calc™ Excel™ based calculation tools, certificates of analysis (COAs), material safety data sheets (MSDS) and frequently asked questions (FAQs) can also be found at www.megazyme.com.

Barry V. McCleany

Professor Barry V. McCleary Chief Executive Officer

Table of Contents

Assay Kits		Enzyme Substrates
Introduction	5	Insoluble Chromogenic Substrates
All Assay Kits	9	Soluble Chromogenic Substrates
Industry Specific Assay Kits	10	Enzyme Tablet Tests
Individual Assay Kit Descriptions	17	Colourimetric Oligosaccharides
Enzymes	64	Carbobydrates

79

Equipment

Kit	Cat. No.	Page
Acetaldehyde	K-ACHYD	17
Acetic Acid (ACS; Analyser format)	K-ACETAF	17
Acetic Acid (ACS; Manual format)	K-ACET	18
Acetic Acid (AK; Analyser format)	K-ACETAK	18
Acetic Acid (ADP-GK format)	K-ACETGK	19
Acetic Acid (RM; Rapid manual format)	K-ACETRM	19
Ammonia (Rapid)	K-AMIAR	20
lpha-Amylase ("Ceralpha" method)	K-CERA	20
lpha-Amylase ("Sprout damaged" method)	K-AMYLSD	21
β-Amylase ("Betam <mark>yl-3" method)</mark>	K-BETA3	21
Amylose / Amylopectin	K-AMYL	22
Amyloglucosidase / Gluc <mark>oamylase</mark>	K-AMG	22
Arabinan	K-ARAB	23
L-Arabinose / D-Galactose (Rapid)	K-ARGA	23
L-Arginine / Urea / Ammonia (Rapid)	K-LARGE	24
L-Ascorbic Acid	K-ASCO	24
L-Asparagine / L-Glutamine / Ammonia (Rapid)	K-ASNAM	25
Aspartame	K-ASPTM	25
Available Carbohydrates / Dietary Fiber	K-ACHDF	26
endo-1,4-β-Glucanase (cellulase)	K-CELLG3	26
Citric Acid	K-CITR	27
Ethanol	K-ETOH	27
Fiber (Total Dietary Fiber)	K-TDFR	28
Fiber (Integrated Total Dietary Fiber)	K-INTDF	28
Formic Acid	K-FORM	29
Fructan (Hexokinase format)	K-FRUCHK	29
Fructan (PAHBAH format)	K-FRUC	30
D-Fructose / D-Glucose	K-FRUGL	30
D-Fructose / D-Glucose (Liquid Ready Reagents)	K-FRGLQR	31
D-Fructose / D-Glucose (MegaQuant™ format)	K-FRGLMQ	31
L-Fucose	K-FUCOSE	32
Galactomannan	K-GALM	32
Beta-Glucan (Mixed linkage)	K-BGLU	33
Beta-Glucan (Yeast and mushroom)	K-YBGL	33
Beta-Glucan (Yeast-Enzymatic)	K-EBHLG	34
Beta-Glucanase (Malt and microbial)	K-MBGL	34
Glucomannan	K-GLUM	35
D-Gluconic Acid / D-Glucono- δ -lactone	K-GATE	35
D-Glucosamine	K-GAMINE	36
D-Glucose (GOPOD format)	K-GLUC	36
D-Glucose (Hexokinase format)	K-GLUHK	37
Glucose Oxidase	K-GLOX	37
D-Glucuronic Acid / D-Galacturonic Acid	K-URONIC	38
α -Glucuronidase	K-AGLUA	38
L-Glutamic Acid (MSG)	K-GLUT	39

Enzyme Tablet Tests 70	
Soluble Chromogenic Substrates 68	58 70

yu

Oligosaccharides	
Polysaccharides	

74 77

Kit	Cat. No.	Page
L-Glutamine / Ammonia (Rapid)	K-GLNAM	39
Glycerol	K-GCROL	40
Glycerol (ADP-GK format)	K-GCROLGK	40
D-3-Hydroxybutyric Acid	K-HDBA	41
myo-Inositol	K-INOSL	41
D-Isocitric Acid	K-ISOC	42
D-Lactic Acid	K-DATE	42
D-/L-Lactic Acid	K-DLATE	43
L-Lactic Acid	K-LATE	43
Lactose / D-Galactose (Rapid)	K-LACGAR	44
Lactose / Sucrose / D-Glucose	K-LACSU	44
Lactulose	K-LACTUL	45
D-Malic Acid	K-DMAL	45
L-Malic Acid	K-LMAL	46
L-Malic Acid (Analyser format)	K-LMALAF	46
L-Malic Acid (Liquid Ready Reagents)	K-LMALQR	47
L-Malic Acid (MegaQuant [™] format)	K-LMALMQ	47
Malt Amylase	K-MALTA	48
Maltose / Sucrose / D-Glucose	K-MASUG	48
D-Mannitol / L-Arabitol	K-MANOL	49
D-Mannose / D-Fructose / D-Glucose	K-MANGL	49
Pectin Identification	K-PECID	50
Phytic Acid (Total Phosphorus)	K-PHYT	50
Primary Amino Nitrogen (NOPA)	K-PANOPA	51
Pyruvic Acid	K-PYRUV	51
Raffinose / D-Galactose	K-RAFGA	52
Raffinose / Sucrose / D-Glucose	K-RAFGL	52
L-Rhamnose	K-RHAMNOSE	53
D-Sorbitol / Xylitol	K-SORB	53
Starch Damage	K-SDAM	54
Starch (Resistant Starch)	K-RSTAR	54
Starch (Total Starch; GOPOD format)	K-TSTA	55
Starch (Total Starch; Hexokinase format)	K-TSHK	55
Succinic Acid	K-SUCC	56
Sucrose / D-Fructose / D-Glucose	K-SUFRG	56
Sucrose / D-Glucose (GOPOD format)	K-SUCGL	57
Sulphite (Total SO,)	K-TSULPH	57
Sulphite (Total SO ₃ ; Enzymatic)	K-ETSULPH	58
Sulphite (Total & Free SO,)	K-SULPH	58
Tartaric Acid	K-TART	59
Trehalose	K-TREH	59
Urea / Ammonia (Rapid)	K-URAMR	60
Xylanase (Azo-Wax format)	K-AZOWAX	60
Xylanase (Xylazyme AX format)	K-XYLS	61
D-Xylose	K-XYLOSE	61
Limit-Dextrinase / Pullulanase	K-LDPU	62
	-	

10

ASSAY KITS...

Enzymes

Principles of Test Procedures

In general terms, enzymes are catalytic proteins that convert one compound into another, and such reactions frequently occur without any visible sign that they have taken place. However, certain enzymatic reactions result in either a "colour" being produced or consumed, and the intensity of the colour change can be measured using a common spectrophotometer.

Invented in the 1950s, the spectrophotometer in its various guises is today one of the most commonly used analytical instruments. The spectrophotometer is a powerful analytical instrument because it can measure changes in absorbance very accurately and quickly. The enzymatic analysis reaction itself is performed in a plastic or glass cuvette

that sits between the source of light and the detector inside

Figure 1. Simplistic representation of enzymatic analysis being conducted using a spectrophotometer.

the spectrophotometer (as depicted simplistically in figure I). A known amount of light travels through the cuvette and the amount that emerges is quantified by the detector. The change in intensity as the light passes through the reaction solution in the cuvette is recorded as an absorbance reading.

Modern enzymatic analysis test kits generally contain all reagents necessary to perform the assay, e.g. buffer, cofactor(s), trigger enzyme and standard solution, in an easy to use form that is stable for > 2 years (even while in use). During a typical enzymatic analysis, deionised water is mixed with buffer, cofactor and sample. Then an absorbance reading (A_1) is taken just before addition of the "trigger" enzyme (specific for the analyte in question), after which the reaction takes place (see figure 2). When the reaction has finished (i.e. the "endpoint" has been achieved), a second absorbance reading is taken (A_2). The difference between these two absorbance readings (i.e. $A_1 - A_2$) is called the change in absorbance (or ΔA) and is directly related to analyte content. It is this value, after correction with a blank reading (reaction containing no sample), that is used to calculate the concentration of the analyte in the sample (typically as g/L), using a simple factor (e.g. 0.2535 in the case of the the acetic acid AK / PTA format). A sample calculation is shown below.

Typical acetic acid calculation

A, (blank) = 1.400 A_{2} (blank) = 1.398 A_{2} (sample) = 0.650 = 1.420 A, (sample) $(A_1 \text{ (sample)} - A_2 \text{ (sample)}) - (A_1 \text{ (blank)} - A_2 \text{ (blank)})$ △Aacetic acid ^{∆A}acetic acid = (1.420 0.650) - (1.400 - 1.398) = 0.768 Thus the concentration of acetic acid = 0.768 x .2535 = 0.1947 g/L

When using Megazyme test kits, calculations can either be performed manually as illustrated above or by using a free Excel[™]-based calculator, called "Mega-Calc[™]", downloadable from the product page on the Megazyme website (www.megazyme. com).

Time, min

Figure 2. Decrease in absorbance at 340 nm on incubation of 0-35 μ g of acetic acid with acetate kinase in the acetic acid AK / PTA format.

Types of Enzymatic Assays

Enzymatic Assays Based on NAD⁺ / NADH / NADP⁺ / NADPH

Megazyme assay kits usually involve enzymes that either directly, or indirectly (via other enzymes), produce or consume a compound called NADH (or NADPH), that although invisible to the human eye, absorbs light strongly at a wavelength of 340 nm (extinction coefficient [ε] = 6300 M⁻¹ cm⁻¹). Figure 3 depicts the various types of enzymatic reactions, either consuming or producing NADH (or NADPH), that are employed in many enzymatic test kits (Reaction I). As can be seen from Figure 3, it is sometimes necessary to include an additional reaction in order to obtain quantitative results (Reaction 2).

This reaction is catalysed by the enzyme diaphorase, in the presence of a compound called INT, which converts the NADH (or NADPH) produced in the first reaction into a red coloured compound called INT-formazan. The resulting change in absorbance at 492 nm can be used to quantify the analyte of interest as discussed previously.

Figure 3. Enzymatic Assays Based on NAD⁺ / NADH / NADP⁺ / NADPH

Reaction 2

p-hydroxy-

benzoic acid

Peroxidase

Increase in absorbance at 510 nm

H₂O

4-amino

antipyrine

Reaction 1

Glucose

Oxidase

H₂O

0,

 $H_{2}O_{2}$

Glucose

Glucono-

δ-lactone

Enzymatic Assays Based on GOPOD determination

A number of Megazyme test procedures are based on the ability to quantify glucose using the Megazyme Glucose oxidase/Peroxidase system (GOPOD). This can be applied directly to measure glucose in a sample (K-GLUC) but also finds use in the measurement of analytes that can be stoichiometrically converted to glucose (e.g. K-LACSU). The principle of the GOPOD system is shown in Figure 4. In Reaction 1, glucose is converted to glucono- δ -lactone by glucose oxidase with the production of H₂O₂. In Reaction 2, H₂O₂ is used by peroxidase to form a quinoneimine that absorbs at 510 nm. The resulting change in absorbance at 510 nm can be used to quantify the analyte of interest as discussed previously.

Enzymatic Assays Based on Chromogenic Substrates / Colourimetric Oligosaccharides

Certain assay kits involving the measurement of hydrolytic enzyme activity are based on the use of chromogenic substrates (e.g. K-AZOWAX) or colourimetric oligosaccharides (e.g. K-CELLG3). Chromogenic substrates are dyed and cross-linked polysaccharides that release colour upon hydrolysis. The colour released is directly proportional to the enzymatic activity being analysed. Colourimetric oligosaccharides are defined oligosaccharides covalently bound to chromogenic or fluorogenic moiety. These moieties are cleaved by hydrolytic enzymes releasing the desired chromophore or fluorophore which can be measured using a spectrophotometer. The principles of these assays are discussed in detail on page 71.

Complete Solutions for Biochemical Analysis

Megazyme has teamed up with Awareness Technology to offer complete analytical solutions in the form of Megazyme assay kits (assay reagents) and associated equipment required to perform the analyses. Suitable assay formats and equipment combinations are available for customers at every level, from high throughput, large analytical laboratories right down to the smallest analytical facilities having minimal scientific equipment.

Assay kits

While many of the Megazyme assay kits for bio-analysis are based on Boehringer Mannheim Methods of Analysis, continual innovation has enabled the introduction of new developments and improvements. Advanced enzymes offer reduced reaction times, and/or increased stability or alternative biochemical reactions that have been evaluated and implemented. Cofactor stability is enhanced by offering these in a stable tablet form or as improved formulations that provide extended stability in solution. Traditionally, assay kits for bio-analysis were supplied for use in the manual spectrophotometer format. Megazyme has adapted this to offer either a specific assay kit or modified procedure providing a comprehensive range of assays that can be used across the various assay formats:

- Manual format manual format for use with cuvettes and a standard UV/Vis spectrophotometer.
- Microplate format automated or manual format for use with standard 96-well microplates and microplate reader.
- Auto-analyser format automated formats for use with any auto-analyser model.

Examples of the available assay kits covering the various assay formats are outlined below for the analysis of **L-malic acid**, a key parameter measured in wine analysis:

- I. K-LMALAF is an advanced formulation of the traditional kits offered by other manufacturers for use in the auto-analyser assay format. The advantages of this kit include (i) PVP is incorporated to prevent sample interference (e.g. from tannins in wine), (ii) very stable RI and R2 reagents, (iii) all reagents are stable for > 2 years during use (both enzymes are supplied as ammonium sulphate suspensions), and (iv) linear calibration (R2 ~ 0.9994) up to 80 µg/mL in final reaction solution (see page 46).
- 2. K-LMALQR is supplied "ready to use" as liquid stable formulations recommended for high throughput use in the microplate or auto-analyser assay formats. The advantages of this kit include (i) no reagent preparation required (ii) very simple format, (iii) very cost effective (iv) PVP is incorporated to prevent sample interference (e.g. from tannins in wine) (iv) reagents are stable for > 2 years (see page 47).
- 3. K-LMAL is an advanced formulation of the traditional kits offered by other manufacturers for use in the manual assay format. The advantages of this kit include (i) PVP is incorporated to prevent sample interference (e.g. from tannins in wine), (ii) all reagents are stable for > 2 years during use (both enzymes are supplied as ammonium sulphate suspensions), (iii) very rapid reaction (~ 3 min) and (iv) an Excel[™] based calculator (Mega-Calc[™]) is available on-line for hassle-free raw data processing (see page 46).
- 4. K-LMALMQ is a novel manual assay format used with the MegaQuant[™] Colorimeter and is recommended for users who do not possess a laboratory and / or analytical expertise. The advantages of this kit include (i) samples do not need to be sent out for contract analysis, (ii) no spectrophotometer is required, (iii) very simple format, (iv) very cost effective, and (v) accurate and reliable with all samples (including red wine) (see page 47).

Equipment

- The **ChemWell® 2910** is a fully automated open system analyser with optimised programmed protocols ready for use with Megazyme assay kits in **auto-analyser assay format**. It is capable of performing 200 biochemistry assays per hour in micro-well strips using a standard 96-well layout. On completion of assays the micro-wells can be automatically washed for re-use and, being equipped with 27 reagent positions and 96 sample positions, this provides the capability to perform continuous tests without intervention.
- The ChemWell®-T is a fully automated open system analyser with optimised programmed protocols ready for use with Megazyme assay kits in auto-analyser assay format. It is capable of performing 100 biochemistry assays per hour in I cm pathlength cuvette strips. Being equipped with 35 combined reagent and sample positions, it is capable of performing 40 tests without intervention. Cuvettes are easy to load and unload and the "continuous loading" capability allows tests to continue with ease.
- Ideally suited to lower throughput users, the Stat Fax® 4500 Chemistry Analyser is a compact, economical, standalone spectrophotometer supplied with programmed protocols for an extensive range of the Megazyme assay kits in manual assay format. The protocols offer ease of use for the analyst, providing on-board step-by-step instructions and automated calculation of results. In addition, the Stat Fax® 4500 can be used as a standard spectrophotometer in various modes offering even greater flexibility.
- The **MegaQuant[™] Colorimeter** is an extremely affordable alternative that can be used to measure residual sugar (D-fructose and D-glucose) and L-malic acid in wine. This is a basic, handheld colorimeter that can provide access to the measurement of these key parameters of wine quality for those without any laboratory equipment.

Method Validation and Recognition by Official Bodies

Many of the analytical methods developed by Megazyme have become the official reference method recommended by the appropriate regulatory body for the area in question. In the area of dietary fiber for example, the international body that sets guidelines for national governments is called CODEX Alimentarius. Of the 14 methods currently approved by CODEX for the measurement of total dietary fiber and dietary fiber components, four were developed by Megazyme.

The table below shows the official bodies that have approved various Megazyme test procedures. Also shown are their abbreviations which are used from pages 16-62 in the relevant individual assay descriptions.

AIJN	Association of the Industry of Juices and Nectars from Fruits and Vegetables	IFU IOCCC	International Federation of Fruit Juice Producers Office International du Cacao, du Chocolat et de
AACC	American Association of Cereal Chemists		la Confiserie
AOAC	Association of Official Analytical Chemists	ISO	International Standard Organisation
ASBC	American Society of Brewing Chemists	IUPAK	International Union of Pure and Applied
CCFRA	Campden & Chorleywood Food Research		Chemistry
	Association Group	JECFA	Joint FAO / WHO Expert Committee on Food
CODEX	CODEX Alimentarius		Additives
DIN	Deutsche Industrie Norm (German Standard)	MEBAK	Central European Brewing Committee for
EBC	European Brewery Convention		Analysis
EEC	Council of European Communities	NBN	Norme Belge (Belgian Standard)
EN	European Norms	NEN	Nederlandske Norm (Dutch Standard)
GOST	GOSSTANDART (State Committee of the	NF	Normes Françaises (French Standard)
	Russian Federation for Standardisation	NMKL	Nordisk Metodikkomité for Næringsmidler
	and Metrology)		(Nordic Committee of Food Analysis)
ICC	International Association for Cereal Science and	ΟΙ۷	Office International de la Vigne et du Vin
	Technology		(International Wine Office)
ICUMSA	International Commission for Uniform Methods	RACI	Royal Australian Chemical Institute
	of Sugar Analysis	UKMBI	United Kingdom Milling and Baking Industries
IDF	International Dairy Federation		

ASSAY KITS

K-ACHYDAcetaldehydeK-ACETAFAcetic Acid (ACS; analyser format)K-ACETAcetic Acid (ACS; manual format)K-ACETAKAcetic Acid (AC; manuser format)K-ACETGKAcetic Acid (AC; analyser format)K-ACETGKAcetic Acid (ADP-GK format)K-ACETRMAcetic Acid (AC; rapid manual format)K-ACETRMAcetic Acid (AK; rapid manual format)K-ACETRMAcetic Acid (AK; rapid manual format)K-ACETRMAcetic Acid (AC; rapid manual format)K-AMIARAmmonia (Rapid)K-CERA α -Amylase (Ceralpha method)K-AMYLSD α -Amylase (Sprout damaged)R-AMHR4Amylase HR Reagent - 4 Vials
K-ACETAFAcetic Acid (ACS; analyser format)K-ACETAcetic Acid (ACS; manual format)K-ACETAKAcetic Acid (AC; analyser format)K-ACETGKAcetic Acid (AC; analyser format)K-ACETGKAcetic Acid (ADP-GK format)K-ACETRMAcetic Acid (AK; rapid manual format)K-ACETRMAcetic Acid (AK; rapid manual format)K-AMIARAmmonia (Rapid)K-CERA α -Amylase (Ceralpha method)K-AMYLSD α -Amylase (Sprout damaged)R-AMHR4Amylase HR Reagent - 4 Vials
K-ACETAcetic Acid (ACS; manual format)K-ACETAKAcetic Acid (AK; analyser format)K-ACETGKAcetic Acid (ADP-GK format)K-ACETRMAcetic Acid (AK; rapid manual format)K-AMIARAmmonia (Rapid)K-CERA α -Amylase (Ceralpha method)K-AMYLSD α -Amylase (Sprout damaged)R-AMHR4Amylase HR Reagent - 4 Vials
K-ACETAKAcetic Acid (AK; analyser format)K-ACETGKAcetic Acid (ADP-GK format)K-ACETRMAcetic Acid (AK; rapid manual format)K-AMIARAmmonia (Rapid)K-CERA α -Amylase (Ceralpha method)K-AMYLSD α -Amylase (Sprout damaged)R-AMHR4Amylase HR Reagent - 4 Vials
K-ACETGKAcetic Acid (ADP-GK format) NEWK-ACETRMAcetic Acid (AK; rapid manual format)K-AMIARAmmonia (Rapid)K-CERAα-Amylase (Ceralpha method)K-AMYLSDα-Amylase (Sprout damaged) NEWR-AMHR4Amylase HR Reagent - 4 Vials
K-ACETRMAcetic Acid (AK; rapid manual format)K-AMIARAmmonia (Rapid)K-CERAα-Amylase (Ceralpha method)K-AMYLSDα-Amylase (Sprout damaged)R-AMHR4Amylase HR Reagent - 4 Vials
K-AMIARAmmonia (Rapid)K-CERAα-Amylase (Ceralpha method)K-AMYLSDα-Amylase (Sprout damaged) ^{NEW} R-AMHR4Amylase HR Reagent - 4 Vials
K-CERAα-Amylase (Ceralpha method)K-AMYLSDα-Amylase (Sprout damaged)R-AMHR4Amylase HR Reagent - 4 Vials
K-AMYLSDα-Amylase (Sprout damaged)R-AMHR4Amylase HR Reagent - 4 Vials
R-AMHR4 Amylase HR Reagent - 4 Vials
· -
R-CAAR4 Ceralpha; α-Amylase Reagent - 4 Vials
K-BETA3 β-Amylase (Betamyl-3 method)
R-BAMR3 Betamyl-3; β-Amylase Assay Reagent - 4 Vials
K-AMYL Amylose/Amylopectin
K-AMG Amyloglucosidase ^{NEW}
R-AMGR3 Amyloglucosidase Assay Reagent - 4 Vials
K-ARAB Arabinan
K-ARGA L-Arabinose / D-Galactose (Rapid) ^{NEW}
K-LARGE L-Arginine / Urea / Ammonia (Rapid)
K-ASCO L-Ascorbic Acid (L-Ascorbate)
K-ASNAM L-Asparagine / L-Glutamine / Ammonia (Rapid)
K-ASPTM Aspartame
K-ACHDF Available Carbohydrates / Dietary Fiber
K-CELLG3 endo-Cellulase ^{NEW}
R-CELLFLR Cellaflour (Cellulase Assay Reagent) ^{NEW}
K-CITR Citric Acid
K-ETOH Ethanol
K-TDFR Fiber (Total Dietary Fiber)
K-INTDF Fiber (Integrated Total Dietary Fiber) ^{NEW}
K-TDFC Fiber Controls (Total Dietary Fiber)
K-FORM Formic Acid
K-FRUCHK Fructan (Hexokinase format)
K-FRUC Fructan (PAHBAH format)
K-FRUGL D-Fructose / D-Glucose
K-FRGLQR D-Fructose / D-Glucose (Liquid Ready Reagents)
K-FRGLMQ D-Fructose / D-Glucose (MegaQuant [™] format)
K-FUCOSE L-Fucose
K-GALM Galactomannan (Carob or guar)
K-BGLU β -Glucan (Barley & oat; mixed linkage)
K-YBGL β-Glucan (Yeast & mushroom)
K-EBHLG β-Glucan (Yeast-enzymatic)
K-MBGL β-Glucanase (Malt & microbial)
K-GLUM Glucomannan
K-GATE D-Gluconate / D-Glucono-δ-lactone
K-GAMINE D-Glucosamine (D-Glucosamine sulphate)
K-GLUC D-Glucose (GOPOD format)
R-GLC4 Glucose Determination Reagent
K-GLUHK D-Glucose (Hexokinase format)
K-GLOX Glucose Oxidase
K-URONIC D-Glucuronic Acid/D-Galacturonic Acid

Cat. No.	Product
K-AGLUA	α-Glucuronidase ^{NEW}
K-GLUT	L-Glutamic Acid (MSG)
K-GLNAM	
K-GCROL	L-Glutamine / Ammonia (Rapid)
	Glycerol
K-GCROLGK	Glycerol (ADP-GK format)
K-HDBA	D-3-Hydroxybutyric Acid
K-INOSL	myo-Inositol ^{NEW}
K-ISOC	D-Isocitric Acid
K-DATE	D-Lactic Acid
K-DLATE	D- / L-Lactic Acid
K-LATE	L-Lactic Acid
K-LACGAR	Lactose / D-Galactose (Rapid)
K-LACSU	Lactose / Sucrose / D-Glucose
K-LACTUL	Lactulose
K-LDPU	Limit-Dextrinase / Pullulanase ^{AVAILABLE SOON}
K-DMAL	D-Malic Acid
K-LMAL	L-Malic Acid
K-LMALAF	L-Malic Acid (Analyser format)
K-LMALQR	L-Malic Acid (Liquid Ready Reagents)
K-LMALMQ	L-Malic Acid (MegaQuant™ format)
K-MALTA	Malt Amylase
K-MASUG	Maltose / Sucrose / D-Glucose
K-MANOL	D-Mannitol / L-Arabitol
K-MANGL	D-Mannose / D-Fructose / D-Glucose
K-PECID	Pectin Identification
K-PHYT	Phytic Acid (Total Phosphorus)
K-PANOPA	Primary Amino Nitrogen (NOPA)
K-PYRUV	Pyruvic Acid
K-RAFGA	Raffinose / D-Galactose
K-RAFGL	Raffinose / Sucrose / D-Glucose
K-RHAMNOSE	L-Rhamnose ^{NEW}
K-SORB	D-Sorbitol / Xylitol
K-SDAM	Starch Damage
K-RSTAR	Starch (Resistant Starch)
K-RSTCL	Starch Controls (Resistant Starch)
K-TSTA	Starch (Total Starch; GOPOD format)
K-TSHK	Starch (Total Starch; Hexokinase format) ^{NEW}
K-TSCK	Starch Controls (Total Starch)
K-SUCC	Succinic Acid
K-SUFRG	Sucrose / D-Fructose / D-Glucose
K-SUCGL	Sucrose / D-Glucose
K-TSULPH	Sulphite (Total SO ₂)
K-ETSULP	Sulphite (Total SO ₂) Sulphite (Total SO; Enzymatic)
K-SULPH	Sulphite (Total & Free SO ₂)
K-TART	Tartaric Acid
K-TREH	Trehalose
K-URAMR	
K-AZOWAX	Urea / Ammonia (Rapid) Xylanase (Azo-Wax format)
K-AZOWAA K-XYLS	
K-XYLOSE	Xylanase (Xylazyme AX format) D-Xylose
K-ATLOJE	0-771030

Food Industry Test Kits

Analyte	Cat. No.	Analyte Significance	Advantages of Megazyme Test Kits
Acetic Acid	K-ACETRM K-ACETAK K-ACETGK	Common food component	K-ACETAK (auto) / K-ACETRM (manual) are very rapid acetate kinase (AK) based kits with excellent linearity. K-ACETGK is a new rapid, auto-analyser assay kit employing AK and phosphotransacetylase. Stable reagents
Ammonia	K-AMIAR	Common food component	K-AMIAR has a very rapid reaction rate (~ 3 min at room temperature). Manual and auto-analyser applications
Amylose / Amylopectin	K-AMYL	Ratio of these components affects the rate of digestion and utilisation of starch	Novel kit, stable reagents
L-Asparagine / L-Glutamine / Ammonia	K-ASNAM	Acrylamide precursors in the production of fried, roasted, toasted potato or other food products	Novel product, enabling all three analytes to be determined in less than 20 min. Manual and microplate format procedures given
L-Ascorbic Acid	K-ASCO	Naturally found in fruits and vegetables, or supplemented in processed foods	Rapid reaction, stable reagents
Available Carbohydrates / Dietary Fiber	K-ACHDF	Sugars rapidly digested and absorbed, and dietary fibre	Novel procedure, stable reagents
β-Glucan (Mixed linkage)	K-BGLU	Major cell-wall polysaccharide of barley and oats	Rapid reaction, stable reagents, only enzymatic kit available. AOAC Method 995.16; AACC Method 32-23.01; ICC Standard No. 166; RACI Standard Method
Citric Acid	K-CITR	Common food component / additive	Ideal for manual and auto-analyser applications
Ethanol	K-ETOH	Found in small amounts in many foods	Rapid reaction, stable reagents (AIDH supplied as a stable suspension)
Fructan	K-FRUC K-FRUCHK	Common component in many foods such as onions and seeds	Novel assays, rapid reaction, stable reagents; AOAC Method 999.03; AACC Method 32-32.01
D-Fructose / D-Glucose	K-FRUGL K-FRGLMQ K-FRGLQR	Very common food sugars, e.g. from high fructose corn syrup supplementation	Ideal for manual and auto-analyser applications. Stable reagents. Choice of spectrophotometric or simple colorimeter formats
D-Gluconic Acid	K-GATE	Food additive	Rapid reaction, stable reagents
D-Glucose	K-GLUC K-GLUHKR/L	Common food component, very important in certain situations, e.g. diabetic products	Choice of simple formats available, based either on glucose oxidase / peroxidase, or hexokinase / G-6-PDH
L-Glutamic Acid	K-GLUT	Common natural food component, e.g. in cheese and tomatoes, or added as a flavouring agent, e.g. as monosodium glutamate (MSG)	Diaphorase supplied as a stabilised suspension rather than a lyophilised powder, thus less wasted enzyme
Glycerol	K-GCROL K-GCROLGK	Common food component, or added as a sweetener or to improve "mouth feel"	Novel tablet format offers superior stability, rapid reactions
D-Lactic Acid	K-DATE K-DLATE	Quality indicator of fruit and vegetable products	Rapid reaction, stable reagents
L-Lactic Acid	K-LATE	Quality indicator of fruit, vegetable and egg products	Rapid reaction, stable reagents. Ideal for manual and auto- analyser applications
Lactose	K-LACGAR K-LACSU	Common processed food component, exact amount important in "lactose free" products	Very rapid reaction for K-LACGAR (~ 5 min even at room temperature), stable reagents
Maltose	K-MASUG	Common food component	Rapid reaction, stable reagents
Resistant Starch	K-RSTAR	Starch that is not digested in the small intestine of monogastric animals	Only kit available. Rapid and robust. AOAC Method 2002.02; AACC Method 32-40.01
Sucrose	K-SUFRG K-SUCGL	Common food component	Choice of simple formats available, based either on glucose oxidase / peroxidase, or hexokinase / G-6-PDH
Sweeteners	K-ASPTM K-MANOL K-SORB	Aspartame, D-mannitol, D-sorbitol and xylitol are common sweeteners found in a variety of foods	 K-ASPTM - novel method, only test kit available K-MANOL - new method, only test kit available K-SORB - diaphorase supplied as a stabilised suspension rather than a lyophilised powder, thus less wasted enzyme
Total Dietary Fiber	K-TDFR K-INTDF	Carbohydrate not digested in small intestine	 K-TDFR: AOAC Methods 985.29, 991.42, 991.43 & 993.19; AACC Methods 32-05.01, 32-06.01, 32-07.01, 32-21.01, K-INTDF is consistent with the CODEX Alimentarius definition of dietary fiber. AOAC Method 2009.01, 2011.25; AACC Methods 32-45.01 & 32-50.11
Total Starch	K-TSTA K-TSTAHK	Major food component	Rapid assay formats with options of measuring D-glucose with GOPOD reagent or with hexokinase / G-6-PDH. Stable reagents. AOAC Method 996.11; AACC Method 76-13.01; ICC Method No. 168; RACI Standard Method

Feed Industry Test Kits

Analyte	Cat. No.	Analyte Significance	Advantages of Megazyme Test Kits
Acetic Acid	K-ACETRM	Commonly found in feed or fermented feed	K-ACETRM is a rapid, manual assay kit employing AK and phosphotransacetylase. Stable reagents
Ammonia	K-AMIAR	Commonly found in feed or fermented feed	Rapid reaction rate (~ 3 min at room temperature). Ideal for manual and auto-analyser applications. Stable reagents
α- Amylase	K-CERA	A key enzyme in most feeds and plant products	Novel assay employing a defined oligosaccharide substrate. High sensitivity and specificity. AOAC Method 2002.01; AACC Method 22-02.01; ICC Standard Method no. 303; RACI Standard Method; CCFRA Flour Testing Working Group Method 0018
Available Carbohydrates / Dietary Fiber	K-ACHDF	Rapidly and slowly available sugars for digestion or fermentation	Novel procedure, stable reagents
Fructan	K-FRUC	Fructo-oligosaccharides in grasses and grains	Only kit available. Stable reagents; AOAC Method 999.03; AACC Method 32-32.01
D-Fructose / D-Glucose	K-FRUGL K-FRGLMQ K-FRGLQR	Major digestible carbohydrates in feeds	Rapid reaction times, choice of simple formats available, ideal for manual and auto-analyser applications, stable reagents
Galactomannan	K-GALM	Reserve carbohydrate in many legume seeds	Only kit available, stable reagents
β-Glucan (Barley and oats)	K-BGLU	Major cell-wall polysaccharide of barley and oats	Rapid reaction, stable reagents, only enzymatic kit available. AOAC Method 995.16; AACC Method 32-23.01; EBC Methods 3.11.1, 4.16.1 and 8.11.1; ICC Standard No.166; RACI Standard Method
β -Glucanase	K-CELLG3	β-Glucanase in feed	Novel assay employing a defined oligosaccharide substrate. High sensitivity, specificity and stability. Rapid reaction, ideal for manual and auto-analyser applications
β -Glucanase	K-MBGL	Cellulase and $\beta\mbox{-glucanase}$ levels in feeds	Only kit available, stable reagents. RACI Standard Method
L-Lactic Acid	K-LATE	Commonly found in fermented feed	Rapid reaction, stable reagents. Ideal for manual and auto-analyser applications
Phytic Acid	К-РНҮТ	Found in most plant materials. Major form of bound phosphate in plant materials	Novel procedure. Rapid reaction, stable reagents
Raffinose / D-Galactose	K-RAFGA	Found in high levels in legume seeds. Causes discomfort and flatulence in pigs	Rapid reaction, stable reagents
Resistant Starch	K-RSTAR	Starch that is not digested in the small intestine of monogastric animals	Only kit available, stable reagents AOAC Method 2002.02; AACC Method 32-40.01,
Total Dietary Fiber	K-TDFR K-INTDF	Carbohydrate not digested in small intestine	I. K-TDFR: AOAC Methods 985.29, 991.42, 991.43 & 993.19; AACC Methods 32-05.01, 32-06.01, 32-07.01, 32-21.01, 2. K-INTDF is consistent with the CODEX Alimentarius definition of dietary fiber. AOAC Method 2009.01, 2011.25; AACC Methods 32-45.01 & 32-50.11
Total Starch	K-TSTA K-TSTAHK	Starch content of grain and feed	Rapid assay formats with options of measuring D-glucose with GOPOD reagent or with hexokinase / G-6-PDH. Stable reagents. AOAC Method 996.11; AACC Method 76-13.01; ICC Method No. 168; RACI Standard Method
<i>endo</i> -β- Xylanase	K-XYLS	β-Xylanase in feed	High sensitivity, stable reagents
<i>endo</i> -β- Xylanase	S-AXBP	β-Xylanase in feed	Sensitive, easy to use, stable reagent
Protease	S-AZCAS	endo-Protease added to feed	Easy to use, stable reagent

Fermentation Industry Test Kits

Analyte	Cat. No.	Analyte Significance	Advantages of Megazyme Test Kits
Acetic Acid	K-ACETRM	A common fermentation product	K-ACETRM is a rapid, manual assay kit employing AK and phosphotransacetylase. Stable reagents
Ammonia	K-AMIAR	Commonly measured in fermentation broths	K-AMIAR has a very rapid reaction rate (~ 3 min at room temperature). Ideal for manual and auto-analyser applications. Stable reagents
α-Amylase	K-CERA	A major fermentation product	Novel assay employing a defined oligosaccharide substrate. High sensitivity and specificity. AOAC Method 2002.01; AACC Method 22-02.01; ICC Standard Method no. 303; RACI Standard Method; CCFRA Flour Testing Working Group Method 0018
L-Asparagine / L-Glutamine / Ammonia	K-ASNAM	Common components of animal cell culture media	Novel product, enabling all three analytes to be determined in less than 20 min. Manual and microplate format procedures given
Citric Acid	K-CITR	A product of fermentation	Ideal for both manual and auto-analyser applications. Reconstituted citrate lyase stable for > 6 months at -20°C. Stable reagents
Ethanol	K-ETOH	Produced during alcoholic fermentation	Rapid reaction, stable reagents (AIDH supplied as a stable suspension)
β-Glucanase	K-CELLG3	A major fermentation product	Novel assay employing a defined oligosaccharide substrate. High sensitivity, specificity and stability. Rapid reaction, ideal for manual and auto-analyser applications
β -Glucanase	K-MBGL	A major fermentation product	Rapid reaction, stable reagents; RACI Standard Method
D-Glucose	K-GLUC K-GLUHK	Common component of fermentation broths	Rapid reaction, stable reagents
Glucose Oxidase	K-GLOX	A major fermentation product	Rapid reaction, simple format, stable reagents
L-Glutamine / Ammonia	K-GLNAM	Common components of animal cell culture media	Simple and rapid test kit gives values for ammonia and L-glutamine
Glycerol	K-GCROL K-GCROLGK	A product of fermentation	Rapid reactions, stable reagents
L-Lactic Acid	K-LATE	Produced predominantly from L-malic acid during malolactic fermentation	Rapid reaction, stable reagents. Ideal for manual and auto- analyser applications
L-Malic Acid	K-LMALR K-LMALAF K-LMALMQ K-LMALQR	Common component of fruits	All kits contain PVP to prevent tannin inhibition. I. K-LMALR/L (manual) rapid reaction 2. K-LMALAF (auto) rapid reaction, excellent linearity 3. K-LMALMQ (manual, colorimeter based) 4. K-LMALQR (auto) liquid ready reagents
Succinic Acid	K-SUCC	Wine acid produced during fermentation	Rapid reaction (~ 6 min at room temperature), stable reagents
Sucrose	K-SUFRG K-SUCGL	Added to increase the amount of alcohol. Use only permitted in certain situations	Choice of simple formats available, based either on glucose oxidase / peroxidase, or hexokinase / G-6-PDH
Urea	K-URAMR	Source of Yeast Available Nitrogen (YAN) and precursor of the carcinogen ethyl carbamate. Over- supplementation with diammonium phosphate (DAP) can result in elevated levels	Simple, very rapid (both urea and ammonia measured in < 10 min at room temperature) and sequential / efficient (only one cuvette required per sample)
α -Amylase	T-AMZ200	A product of fermentation	Rapid reaction, stable reagent AACC Method 22.05; RACI Standard Method
<i>endo</i> - Arabinanase	T-ARZ200	A product of fermentation	Rapid reaction, stable reagent
β -Glucanase	S-ABG100	A product of fermentation	Rapid reaction, stable reagent
Pullulanase	S-RPUL	A product of fermentation	Rapid reaction, stable reagent
<i>endo</i> -β- Xylanase	S-AXBP	A product of fermentation	Rapid reaction, stable reagent

Wine Industry Test Kits

Analyte	Cat. No.	Analyte Significance	Advantages of Megazyme Test Kits
Acetaldehyde	K-ACHYD	A sensory compound that adds flavour and complexity, but spoils wine at high concentrations	AcDH supplied as a stabilised solution rather than a lyophilised powder, thus less wasted enzyme
Acetic Acid	K-ACET K-ACETAF K-ACETAK K-ACETRM K-ACETGK	A sensory compound that adds flavour and complexity in small amounts, but spoils wine at high concentrations. Produced naturally by yeast in small amounts and by spoilage organisms such as <i>Acetobacter aceti</i> in large quantities. This is the predominant of the acids comprising ~ 85% volatile acidity (VA)	All kits contain PVP to prevent tannin inhibition. K-ACET (manual, efficient) contains stable ACS suspension. K-ACETAF (auto) used to prepare very stable RI and R2. K-ACETAK (auto) / K-ACETRM (manual) are very rapid acetate kinase (AK) based kits with excellent linearity. K-ACETGK is a new rapid, auto-analyser assay kit employing AK and phosphotransacetylase. Stable reagents
Ammonia	K-AMIAR K-LARGE	Most important inorganic source of Yeast Available Nitrogen (YAN)	Novel enzyme employed is not inhibited by tannins, endpoint reaction time \sim 3 min. Ideal for manual and auto-analyser applications
L-Arginine	K-LARGE	Most important amino acid in grape juice with respect to YAN	Simple and rapid test kit gives sequential values for ammonia, urea and L-arginine. No tannin inhibition
L-Ascorbic Acid	K-ASCO	Present naturally in grapes and can be added as an anti-oxidant	Rapid reaction, stable reagents
Citric Acid	K-CITR	Naturally present in small amounts; large amounts indicate addition for acidification (EU limit is I g/L)	Ideal for both manual and auto-analyser applications. Reconstituted citrate lyase stable for > 6 months at -20°C. Stable reagents
Ethanol	K-ETOH	Produced during alcoholic fermentation. Amounts > 17.5% (v/v) indicate supplementation	Rapid reaction, stable reagents (AIDH supplied as a stable suspension)
D-Fructose / D-Glucose	K-FRUGL K-FRGLMQ K-FRGLQR	Grape quality indicator. One of the two principle fermentable sugars of grape juice	Contains PVP to prevent tannin inhibition. Ideal for manual and auto-analyser use. Stable reagents
D-Gluconic Acid	K-GATE	Grape quality indicator for the production of certain wines	Rapid reaction, stable reagents
Glycerol	K-GCROL K-GCROLGK	Quality indicator of finished wine, important for "mouth feel"	Novel tablet format offers superior stability, rapid reaction
D-Lactic Acid	K-DATE K-DLATE	Produced predominantly by lactic acid spoilage bacteria	Rapid reaction, stable reagents
L-Lactic Acid	K-LATE K-DLATE	Produced predominantly from L-malic acid during malolactic fermentation	Rapid reaction, stable reagents. Ideal for manual and auto- analyser applications
D-Malic Acid	K-DMAL	Only present in significant quantities in adulterated wine	D-MDH supplied as a stabilised suspension rather than a lyophilised powder, thus less wasted enzyme
L-Malic Acid	K-LMALR K-LMALAF K-LMALMQ K-LMALQR	Grape quality indicator. Very important grape acid, converted to less acidic L-lactic acid during malolactic fermentation	All kits contain PVP to prevent tannin inhibition. I. K-LMALR/L (manual) rapid reaction 2. K-LMALAF (auto) rapid reaction, excellent linearity 3. K-LMALMQ (manual, colorimeter based) 4. K-LMALQR (auto) liquid ready reagent
Primary Amino Nitrogen (NOPA)	K-PANOPA	Primary amino nitrogen (PAN) is the most important organic source of YAN	Novel kit, rapid reaction, stable reagents, simple format
D-Sorbitol	K-SORB	High levels indicate addition of fruit	Diaphorase supplied as a stabilised suspension rather than a lyophilised powder, thus less wasted enzyme
Succinic Acid	K-SUCC	Wine acid produced during fermentation	Rapid reaction (~ 6 min even at room temperature), stable reagents
Sucrose	K-SUFRG K-SUCGL	Added to increase the amount of alcohol. Use only permitted in certain situations	Choice of simple formats available, based either on glucose oxidase / peroxidase, or hexokinase / G-6-PDH
Sulphite	K-SULPH K-TSULPH K-ETSULPH	Sulphites are used as an essential additive in the control of microbial contamination during aging and also to protect the wine against detrimental "oxidative and enzymatic browning"	Choice of simple formats available, based either on liquid ready reagent chemical reactions (K-SULPH & K-TSULPH) or an enzymatic reaction (K-ETSULPH). Stable reagents
Tartaric Acid	K-TART	Occurs naturally in grapes and is one of the most prevalent organic acids. Key indicator of total (titratable) acidity (TA)	Stable liquid ready reagents. Simple, rapid chemical reaction for manual, auto-analyser and microplate formats
Urea	K-URAMR	Source of YAN and precursor of the carcinogen ethyl carbamate. Over-supplementation with DAP can result in elevated levels	Simple, very rapid (both urea and ammonia measured in < 10 min at room temperature) and sequential / efficient (only one cuvette required per sample)

Analyte	Cat. No.	Analyte Significance	Advantages of Megazyme Test Kits
α-Amylase	K-CERA	A key indicator of malt quality	Novel assay employing a defined oligosaccharide substrate. High sensitivity and specificity. AOAC Method 2002.01; AACC Method 22-02.01; ICC Standard Method no. 303; RACI Standard Method; CCFRA Flour Testing Working Group Method 0018
β- Amylase	K-BETA3	A key indicator of malt quality	Only kit available. Stable reagents; RACI Standard Method
β-Glucan (Barley and oats)	K-BGLU	Major cell-wall polysaccharide of barley and oats	Rapid reaction, stable reagents, only enzymatic kit available. AOAC Method 995.16; AACC Method 32-23.01; EBC Methods 3.11.1, 4.16.1 and 8.11.1; ICC Standard Method No. 166; RACI Standard Method
β-Glucanase	K-MBGL	β-Glucanase level in malt	Rapid reaction, stable reagents, only enzymatic kit available; RACI Standard Method
D-Glucose	K-GLUC K-GLUHKR/L	Major component of fermentation mixture	Rapid reaction, stable reagents
Malt Amylase	K-MALTA	Measurement of $\alpha\text{-/}\beta\text{-amylase}.$ Key indicators of malt quality	Combination of both K-CERA and K-BETA3
Total Starch	K-TSTA K-TSTAHK	Starch content of grain and feed	Rapid assay formats with options of measuring D-glucose with GOPOD reagent or with hexokinase / G-6-PDH. Stable reagents. AOAC Method 996.11; AACC Method 76-13.01; ICC Method No. 168; RACI Standard Method
Alpha-Amylase	T-AMZBG200	Allows measurement of $\alpha\text{-amylase}$ in pre-harvest sprouted barley	Novel procedure. Rapid reaction, stable reagent
β-Glucanase	T-BGZ200	Key enzyme in hydrolysis of malt β -glucans	Novel substrate. Rapid reaction, stable reagent; RACI Standard Method
Limit- Dextrinase	T-LDZ200	Key enzyme in hydrolysis of 1,6-linkages in starch and branched malto-dextrins	Novel substrate. Rapid reaction, stable reagent; RACI Standard Method
<i>endo</i> -β- Xylanase	T-XAX200	Key enzyme in hydrolysis of malt xylans	Novel substrate. Rapid reaction, stable reagent

Dairy Industry Test Kits

Analyte	Cat. No.	Analyte Significance	Advantages of Megazyme Test Kits
Acetaldehyde	K-ACHYD	One of the most important aroma compounds in yogurt, responsible for the characteristic taste. Also formed in milk during storage	AIDH supplied as a stabilised solution rather than a lyophilised powder, thus less wasted enzyme. Stable reagents
Acetic Acid	K-ACET K-ACETAF K-ACETAK K-ACETRM K-ACETGK	Fermentation product of yogurt and cheese	All kits contain PVP to prevent tannin inhibition. K-ACET (manual, efficient) contains stable ACS suspension. K-ACETAF (auto) used to prepare very stable R1 and R2. K-ACETAK (auto) / K-ACETRM (manual) are very rapid acetate kinase (AK) based kits with excellent linearity. K-ACETGK is a new rapid, auto-analyser assay kit employing AK and phosphotransacetylase. Stable reagents
Ammonia	K-AMIA K-AMIAR	Important indicator of the hygienic quality (microbial load) of milk	K-AMIAR has a very rapid reaction rate (~ 3 min at room temperature). Ideal for manual and auto-analyser applications, stable reagents
L-Ascorbic Acid	K-ASCO	Antioxidant present in dairy products. Permitted additive	Rapid reaction, stable reagents
Aspartame	K-ASPTM	Common milkshake and yogurt sweetener	Rapid reaction, stable reagents, only enzymatic kit available
Citric Acid	K-CITR	Important quality indicator of milk, especially for butter and cheese production. Permitted additive	Ideal for both manual and auto-analyser applications. Reconstituted citrate lyase stable for > 6 months at -20°C, stable reagents
Ethanol	K-ETOH	Produced during the fermentation of kefir	Rapid reaction, stable reagents (AIDH supplied as a stable suspension)
Formic Acid	K-FORM	Minor acid in dairy products	FDH supplied as a stabilised suspension rather than a lyophilised powder, thus less wasted enzyme, stable reagents
D-Fructose / D-Glucose	K-FRUGL K-FRGLMQ	Common milkshake and yogurt sweetener	Rapid reaction times, choice of simple formats available, ideal for manual and auto-analyser applications, stable reagents
D-Gluconic Acid	K-GATE	Weak organic acid found in dairy products. High levels found in certain cheeses	Rapid reaction, stable reagents
D-Glucose	K-GLUC K-GLUHKR/L	Low levels expected in unprocessed / unadulterated milk and in cheese. Useful marker when producing lactose depleted dairy products	Choice of simple formats available, based either on glucose oxidase / peroxidase, or hexokinase / G-6-PDH, stable reagents
L-Glutamic Acid	K-GLUT	Found in high concentrations, especially in cheese	No wasted diaphorase solution (stable suspension supplied), stable reagents
D-Lactic Acid	K-DATE	Quality indicator of milk, yogurt and cheese	Rapid reaction, stable reagents
L-Lactic Acid	K-LATE	Quality indicator of fresh milk. High levels in yogurt and cheese	Rapid reaction, stable reagents. Ideal for manual and auto-analyser applications
D-/L-Lactic Acid	K-DLATE	Quality indicator of fresh milk, yogurt and cheese	Rapid reaction, flexible concurrent format, stable reagents
Lactose / D-Galactose	K-LACGAR	Key quality (value) indicator of milk	Very rapid reaction (~ 5 min even at room temperature), stable reagents
D-Sorbitol / Xylitol	K-SORB	Dairy product sweetener	No wasted diaphorase solution (stable suspension supplied), stable reagents
Succinic Acid	K-SUCC	Minor dairy acid	Rapid reaction (~ 6 min even at room temperature), stable reagents
Sucrose	K-SUFRG K-SUCGL	Not present naturally in dairy products	Choice of simple formats available, based either on glucose oxidase / peroxidase, or hexokinase / G-6-PDH, stable reagents
Urea	K-URAMR	Quality indicator of milk, especially that used for cheese production. Used as a metabolic marker of bovine blood urea levels	Simple, very rapid (both urea and ammonia measured in < 10 min at room temperature) and sequential / efficient (only one cuvette required per sample)

OVERVIEW OF ASSAY METHODS

Acetaldehyde

UV-method for the determination of Acetaldehyde in foodstuffs, beverages and other materials

-		
Pru	ncip	le:
	icip	i

(aldehyde dehydrogenase) (I) Acetaldehyde + NAD⁺ + H₂O → acetic acid + NADH + H⁺		
Kit size:	50 assays (manual) / 500 (microplate) / 500 (auto- analyser)	
Method:	Spectrophotometric at 340 nm	
Reaction time:	~ 4 min	
Detection limit:	0.18 mg/L	
Application examples:	Wine, champagne, beer, liqueurs, brandy, dairy products (e.g. yogurt), bread, fruit juices, soft drinks, cocoa, vegetable and fruit products, coffee, and other materials (e.g. biological cultures, samples, etc.)	
Method recognition:	Methods based on this principle have been accepted by MEBAK	

Cat. No. K-ACHYD

Advantages

- No wasted aldehyde dehydrogenase solution (stable suspension supplied)
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Simple format
- Mega-CalcTM software tool is available from our website for hassle-free raw data processing
- Standard included
- Extended cofactors stability
- Suitable for manual, microplate and autoanalyser formats

Acetic Acid (Acetyl-CoA synthetase analyser format)

Analyser format UV-method for the determination of Acetic Acid in foodstuffs, beverages and other materials

Principle:

(acetyl-CoA synthetase)

(I) Acetic acid + ATP + CoA \rightarrow acetyl-CoA + AMP + pyrophosphate

(citrate synthase) (2) Acetyl-CoA + oxaloacetate + $H_2O \rightarrow citrate + CoA$

(L-malate dehydrogenase) (3) L-Malate + NAD⁺ ↔ oxaloacetate + NADH + H⁺

Kit size:	141.6 mL of prepared reagent (R1 + R2)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 15 min
Detection limit:	10 mg/L (recommended assay format)
Application examples:	Wine, beer, fruit and fruit juices, soft drinks, vinegar, vegetables, pickles, dairy products (e.g. cheese), meat, fish, bread, bakery products (and baking agents), ketchup, soy sauce, mayonnaise, dressings, paper (and cardboard), tea, pharmaceuticals (e.g. infusion solutions), feed and other materials (e.g. biological cultures, samples, etc.)
Method recognition:	Methods based on this principle have been accepted by EN, ISO, ICUMSA, IFU, MEBAK

Cat. No. K-ACETAF

- No wasted ACS solution (stable suspension supplied)
- PVP incorporated to prevent tannin inhibition
- Very stable reagent when prepared for auto-analyser applications (> 3 days at 4°C)
- Linear calibration up to 30 µg/mL of acetic acid in final reaction solution
- Validated by the University of Wine, Suze la Rousse, France
- Very competitive price (cost per mL of reagent)
- All reagents stable for > 2 years after preparation

Acetic Acid (Acetyl-CoA synthetase manual format)

Manual format UV-method for the determination of Acetic Acid in foodstuffs, beverages and other materials

Principle:

(acetyl-CoA synthetase) (I) Acetic acid + ATP + CoA \rightarrow acetyl-CoA + AMP + pyrophosphate

(citrate synthase) (2) Acetyl-CoA + oxaloacetate + $H,O \rightarrow citrate + CoA$

(L-malate dehydrogenase) (3) L-Malate + NAD⁺ ↔ oxaloacetate + NADH + H⁺

Kit size:	53 assays	
Method:	Spectrophotometric at 340 nm	• 1
Reaction time:	~ 14 min	1
Detection limit:	0.14 mg/L	
Application examples:	Wine, beer, fruit and fruit juices, soft drinks, vinegar, vegetables, pickles, dairy products (e.g. cheese), meat, fish, bread, bakery products (and baking agents), ketchup, soy sauce, mayonnaise, dressings, paper (and cardboard), tea, pharmaceuticals (e.g. infusion solutions), feed, and other materials (e.g. biological cultures, samples, etc.)	
Method recognition:	Methods based on this principle have been accepted by EN, ISO, ICUMSA, IFU, MEBAK	

Cat. No. K-ACET

Advantages

- No wasted ACS solution (stable suspension supplied)
- PVP incorporated to prevent tannin inhibition
- All reagents stable for > 2 years after preparation
- Very competitive price (cost per test)
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing

Acetic Acid (Acetate kinase analyser format)

Analyser format UV-method for the determination of Acetic Acid in foodstuffs, beverages and other materials

Principle:

(acetate kinase) (I) Acetic acid + ATP → acetyl-phosphate + ADP

(pyruvate kinase) (2) ADP + PEP → ATP + pyruvate

(D-lactate dehydrogenase)
(3) Pyruvate + NADH + H⁺ → D-lactic acid + NAD⁺

Kit size:	550 assays
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 10 min
Detection limit:	10 mg/L (recommended assay format)
Application examples:	Wine, beer, fruit and fruit juices, soft drinks, vinegar, vegetables, pickles, dairy products (e.g. cheese), meat, fish, bread, bakery products (and baking agents), ketchup, soy sauce, mayonnaise, dressings, paper (and cardboard), tea, pharmaceuticals (e.g. infusion solutions), feed, and other materials (e.g. biological cultures, samples, etc.)
Method recognition:	Improved method

Cat. No. K-ACETAK

- Very stable reagent when prepared for auto-analyser applications (> 7 days at 4°C)
- PVP incorporated to prevent tannin inhibition
- Linear calibration (R² ~ 0.9995) up to 30 μg/mL of acetic acid in final reaction solution
- Validated by the University of Wine, Suze la Rousse, France
- Very rapid reaction
- Very competitive price (cost per mL of reagent)
- All reagents stable for > 2 years
- Extended cofactors stability

Acetic Acid (Analyser format)

Analyser format UV-method for the determination of Acetic Acid in foodstuffs, beverages and other materials		
Principle:		
(acetate kinase)		
(I) Acetic acid + ATP \rightarrow ace	etyl-phosphate + ADP	
	(PTA)	
(2) Acetyl-phosphate + CoA		
(ADP-GK)		
(3) ADP + D-glucose \rightarrow glucose	ose 6-phosphate + AMP	
	(G6P-DH)	
(4) Glucose-6-phosphate + NAD ⁺ \rightarrow 6-phosphogluconate + NADH		
Kit size:	500 assays	
Method:	Spectrophotometric at 340 nm	
Reaction time:	8 min at 25°C or 5 min at 37°C	
Detection limit:	I.8 g/L (recommended assay format)	
Application examples:	Wine, beer, fruit and fruit juices, soft drinks, vinegar,	
- FF	vegetables, pickles, dairy products (e.g. cheese), meat,	
	fish, bread, bakery products (and baking agents), ketchup,	
	soy sauce, mayonnaise, dressings, paper (and cardboard),	
	tea, pharmaceuticals (e.g. infusion solutions), feed, and	
	other materials (e.g. biological cultures, samples, etc.)	

Method recognition:

Acetic Acid (Rapid manual format)

Manual format UV-method for the determination of Acetic Acid in foodstuffs, beverages and other materials

Improved method

Principle:

(acetate kinase) (I) Acetic acid + ATP → acetyl-phosphate + ADP

 $(phosphotransacetylase) \eqref{eq:phosphate} \eqref{eq:phosphotransacetylase} (2) \eqref{eq:phosphate} \eqref{eq:phosphotransacetylase} \eqref{eq:phosphotransacetylase} \eqref{eq:phosphotransacetylase} \eqref{eq:phosphotransacetylase} \eqref{eq:phosphotransacetylase} (2) \eqref{eq:phosphotransacetylase} \eqref{eq:phosphotransacetylase} \eqref{eq:phosphotransacetylase} \eqref{eq:phosphotransacetylase} (2) \eqref{eq:phosphotransacetylase} \eqref{eq:phosphotr$

(pyruvate kinase) (3) ADP + PEP → ATP + pyruvate

(D-lactate dehydrogenase) (4) Pyruvate + NADH + H⁺ → D-lactic acid + NAD⁺

Kit size:	72 assays (manual) / 720 (microplate)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 4 min
Detection limit:	0.063 mg/L
Application examples:	Wine, beer, fruit and fruit juices, soft drinks, vinegar, vegetables, pickles, dairy products (e.g. cheese), meat, fish, bread, bakery products (and baking agents), ketchup, soy sauce, mayonnaise, dressings, paper (and cardboard), tea, pharmaceuticals (e.g. infusion solutions), feed and other materials (e.g. biological cultures, samples, etc.)
Method recognition:	Improved method

Cat. No. K-ACETGK

Advantages

- Excellent reagent stability
- > 7 days at 4°C or
 > 2 years at -20°C when prepared for auto-analyser applications
- > 2 years as supplied
- Very rapid reaction (~ 5 min at 37°C)
- Linear calibration (R2 ~ 0.997 up to 1.8 g/L sample)

Cat. No. K-ACETRM

- Improved assay format (only two absorbance readings required)
- All reagents stable for > 2 years after preparation
- PVP incorporated to prevent tannin inhibition
- Very rapid reaction (~ 4 min)
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Very competitive price (cost per test)
- Suitable for Manual and Microplate formats

Ammonia (Rapid)

UV-method for the determination of Ammonia in foodstuffs, beverages and other materials

Principle:

(microbial glutamate dehydrogenase)		
(I) 2-Oxoglutarate + NADPH + $NH_4^+ \rightarrow L$ -glutamic acid + NADP ⁺ + H_2O		
Kit size:	96 assays (manual) / 960 (microplate) / 960 (auto-analyser)	
Method:	Spectrophotometric at 340 nm	
Reaction time:	~ 3 min	
Detection limit:	0.07 mg/L	
Application examples:	Grape juice, wine, fruit juices, soft drinks, dairy products (e.g. milk), dietetic food, soy sauce, eggs and egg products, cheese, meat, processed meat, seafood, bakery products (and baking agents), fertilisers, pharmaceuticals, tobacco, cosmetics, water, Kjeldahl analysis, paper (and cardboard), water and other materials (e.g. biological cultures, samples, etc.)	
Method recognition:	Methods based on this principle have been accepted by MEBAK	

Cat. No. K-AMIAR

Advantages

- Very rapid reaction due to use of uninhibited glutamate dehydrogenase
- Enzyme supplied as stabilised suspension
- Very competitive price (cost per test)
- All reagents stable for > 2 years as supplied
- Mega-CalcTM software tool is available from our website for hassle-free raw data processing
- Standard included
- Extended cofactors stability
- Suitable for manual, microplate and autoanalyser formats

α-Amylase ("Ceralpha" Method)

Colourimetric method for the determination of Alpha-Amylase in foodstuffs, feed and fermentation products

Principle:

 $(\alpha-amylase)$ (I) Benzylidene-G₇- α -PNP + H₂O \rightarrow Benzylidene-G_x + G_(7-x)- α -PNP

(thermostable α -glucosidase) (2) $\mathbf{G}_{(7,x)}$ - α -PNP + $\mathbf{H}_2\mathbf{O} \rightarrow \mathbf{D}$ -glucose + PNP

(alkaline solution) (3) PNP → phenolate ion (yellow colour)

Note: PNP = 4-nitrophenol

Kit size:	100 / 200 assays
Method:	Spectrophotometric at 400 nm
Total assay time:	~ 20 min
Detection limit:	0.05 U/mL
Application examples:	Cereal flours, fermentation broths and other materials
Method recognition:	AOAC (Method 2002.01), AACC (Method 22.02.01),
	ICC (Standard No. 303), RACI (Standard Method), and
	CCFRA (Flour Testing Working Group Method 0018)

Cat. No. K-CERA

- Very cost effective
- All reagents stable for
 2 years after preparation
- Very specific
- Simple format
- Mega-CalcTM software tool is available from our website for hassle-free raw data processing
- · Standard included

α-Amylase ("Sprout Damaged" Method)

Highly sensitive colourimetric method for the determination of α -Amylase in sprout damaged grain

Principle:

(α -amylase) (I) Ethylidene- G_{r} - α -PNP + $H_{2}O \rightarrow$ Ethylidene- G_{x} + $G_{(r,x)}$ - α -PNP

(thermostable α -glucosidase)

(2) $G_{(7-x)}$ - α -PNP + $H_2O \rightarrow D$ -glucose + PNP

(alkaline solution) (3) **PNP** \rightarrow phenolate ion (yellow colour)

Note: PNP = 4-nitrophenol

Kit size:	80 / 160 assays (manual) / 640 (auto-analyser)
Method:	Spectrophotometric at 400 nm
Total assay time:	~ 5 min
Detection limit:	0.05 U/mL
Application examples:	Sprout damaged wheat grain
Method recognition:	Novel method

Cat. No. K-AMYLSD

Advantages

- · Extremely high sensitivity - 2.4-fold increase over Ceralpha (K-CERA)
- Very cost effective
- All reagents stable for > 2 years after preparation
- Very specific
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual and auto-analyser formats

β-Amylase ("Betamyl-3" Method)

Colourimetric method for the determination of β -Amylase in cereal grains, malt, food, beverages and fermentation products

Principle:

(β-amylase) (I) $G_1 - \beta - PNP + H_2O \rightarrow G_2 + G_2 - \beta - PNP$

 $(\beta$ -glucosidase) (2) $G-\beta$ -PNP + H,O \rightarrow D-glucose + PNP

(alkaline solution) (3) p-Nitrophenol \rightarrow phenolate ion (yellow colour)

Note: PNP = 4-nitrophenol

Kit size:	100 / 200 assays
Method:	Spectrophotometric at 400 nm
Reaction time:	~ 10 min
Detection limit:	0.05 U/mL of sample solution
Application examples:	Cereal flours, malts and other materials
Method recognition:	Modification of RACI (Standard Method)

Cat. No. K-BETA3

- Very cost effective
- All reagents stable for > 2 years as supplied
- · Only enzymatic kit available
- Very specific
- Simple format
- · Rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

Amylose / Amylopectin

Colourimetric method for t cereals, food and feed	the determination of Amylose and Amylopectin in	
Principle:		
(I) Soluble starch (amylose	(Con A) + amylopectin) → amylose + amylopectin-Con A (soluble) (precipitate)	
(α-amy (2) Amylose (in solution) +	lase + amyloglucosidase) H₂O → D-glucose	
(glucose (3) D-Glucose + H ₂ O + O ₂ -	/	
(4) H ₂ O ₂ + p-hydroxybenzoid	(peroxidase) c acid + 4-aminoantipyrine → quinoneimine + H₂O	
(α-am) (5) Total starch (in solution	ylase + amyloglucosidase)) + H₂O → D-glucose	
Kit size:	100 assays	
Method:	Spectrophotometric at 510 nm	
Total assay time:	~ I20 min	
Detection limit:	Amylose 5-95% of total starch content	
Application examples:	ication examples: Cereal starches, flours, pure starches and foods	
Method recognition:	1ethod recognition: Novel method	

Cat. No. K-AMYL

egazyme

Advantages

- Very cost effective (cost per test)
- All reagents stable for > 12 months after preparation
- Only enzymatic kit available
- Accurate and reliable amylose / amylopectin ratio determination
- Simple format
- Standard included

Amyloglucosidase / Glucoamylase

Principle:

(amyloglucosidase) (I) G,- β -PNP + H,O \rightarrow D-glucose + G- β -PNP

(thermostable β -glucosidase) (2) G- β -PNP + H₂O \rightarrow D-glucose + PNP

(alkaline solution) (3) PNP → phenolate ion (yellow colour)

Note: PNP = 4-nitrophenol

Kit size:	150 / 300 assays
Method:	Spectrophotometric at 400 nm
Total assay time:	~ 10 min
Detection limit:	0.05 U/mL
Application examples:	Industrial enzyme preparations
Method recognition:	Novel method

Cat. No. K-AMG

- Highly sensitive
- Very cost effective
- All reagents stable for > 2 years after preparation
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

Arabinan

UV-method for the determination of Arabinan in plant materials and juices

Principle:

- (endo-arabinanase + α -L-arabinofuranosidase) (I) Arabinan + H₂O \rightarrow L-arabinose
- (galactose mutarotase) (2) α -L-Arabinose $\leftrightarrow \beta$ -L-arabinose

(β-galactose dehydrogenase) (3) β-L-Arabinose + NAD⁺ → L-arabinonic acid + NADH + H⁺

Kit size: Method: Reaction time: Detection limit: Application examples: Method recognition: 100 assays Spectrophotometric at 340 nm ~ 10 min 1.3 mg/L Fruit juices and other materials **Novel method**

Megazyme

Cat. No. K-ARAB

Advantages

- Very rapid reaction due to inclusion of galactose mutarotase (patented technology)
- Very cost effective
- All reagents stable for > 2 years after preparation
- Only enzymatic kit available
- Very specific
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

L-Arabinose / D-Galactose (Rapid)

UV-method for the determination of L-Arabinose and D-Galactose in
hydrolysed plant products
Principle:

(galactose mutarotase)		
(I) α -L-Arabinose / α -D-galad	ctose \Leftrightarrow β -L-arabinose / β -D-galactose	
(β -galactose dehydrogenase) (2) β -L-Arabinose + NAD ⁺ \rightarrow L-arabinonic acid + NADH + H ⁺		
(β-galactose dehydrogenase) (3) β-D-Galactose + NAD ⁺ → D-galactonic acid + NADH + H ⁺		
Kit size:	115 assays (manual) / 1150 (microplate) / 1150 (auto- analyser)	
Method:	Spectrophotometric at 340 nm	
Reaction time:	~ 5 min	
Detection limit:	I.3 mg/L	
Application examples:	Analysis of hydrolysates of oligo- and polysaccharides (e.g. arabinan, arabinoxylan, galactan, arabinogalactan), milk, dairy products, foods containing milk (e.g. dietetic foods, bakery products, baby food, chocolate, sweets and ice-cream), food additives (e.g. sweeteners), cosmetics, pharmaceuticals and other materials (e.g. biological cultures, samples, etc.)	

Novel method

Method recognition:

Cat. No. K-ARGA

- Very rapid reaction due to inclusion of galactose mutarotase (patented technology)
- Very cost effective
- All reagents stable for > 2 years after preparation
- Only enzymatic kit available
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

L-Arginine / Urea / Ammonia (Rapid)

UV-method for the determination of L-Arginine, Urea and Ammonia in grape juice, must and wine

Principle:

(microbial glutamate dehydrogenase)

(I) 2-Oxoglutarate + NADPH + $NH_4^+ \rightarrow L$ -glutamic acid + NADP⁺ + H_2O

(urease) (2) Urea + $H_2O \rightarrow 2 NH_3 + CO_2$

(arginase) (3) L-Arginine + $H_2 O \rightarrow$ urea + ornithine

Kit size:	50 assays of each
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 20 min [ammonia (2 min), urea (6 min),
	L-arginine (7 min)]
Detection limit:	0.07 mg/L (ammonia), 0.13 mg/L (urea),
	0.37 mg/L (L-arginine)
Application examples:	Grape juice, wine must, wine and other materials (e.g.
	biological cultures, samples, etc.)
Method recognition:	Improved method

Cat. No. K-LARGE

Advantages

- · Improved assay format
- Very rapid reactions due to use of uninhibited glutamate dehydrogenase
- All enzymes supplied as stabilised suspensions
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Extended cofactors stability

L-Ascorbic Acid

Colourimetric method for the determination of L-Ascorbic Acid in foodstuffs, feed, wine and other materials

Principle:

(5-methylphenazinium methosulphate) (I) L-Ascorbic acid + R-H₂ + MTT \rightarrow dehydroascorbate + MTT-formazan + H⁺

(ascorbic acid oxidase) (2) L-Ascorbic acid + ½O, → dehydroascorbate + H,O

Kit size:	40 assays (manual) / 400 (microplate) / 400 (auto-analyser)	
Method:	Spectrophotometric at 578 nm	
Reaction time:	~ 8 min	
Detection limit:	0.175 mg/L	
Application examples:	Wine, beer, fruit juices, soft drinks, jam, milk, dairy products (e.g. cheese), dietetic foods, baby foods, processed meat, baking additives, fruit and vegetables (e.g. tomato and potato), pharmaceuticals, feed and other materials (e.g. biological cultures, samples, etc.)	
Method recognition:	Methods based on this principle have been accepted by MEBAK	

Cat. No. K-ASCO

- Very competitive price (cost per test)
- All reagents stable for > 6 months after preparation
- Mega-CalcTM software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

L-Asparagine / L-G	utamine / Ammonia (Rapid)	Cat. No. K-ASNAM
UV-method for the determin Ammonia in potatoes, foods	nation of L-Asparagine, L-Glutamine and tuffs and cell culture media	Advantages
Principle: (glutamin: (I) L-Glutamine + H₂O →	/	• Very rapid reaction due to use of uninhibited glutamate dehydrogenase
	crobial glutamate dehydrogenase) NADPH → L-glutamate + NADP⁺ + H,O	• All enzymes supplied as stabilised suspensions
(asparagin (3) L-Asparagine + H₂O →	,	Only kit availableVery cost effective
Kit size: Method: Reaction time: Detection limit:	50 assays of each Spectrophotometric at 340 nm ~ 20 min 0.50 mg/L (L-asparagine) 0.54 mg/L (L-glutamine) 0.06 mg/L (ammonia)	 All reagents stable for > 2 years after preparation Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
Application examples: Method recognition:	Potatoes, potato products, vegetables, cereals and other materials (e.g. biological cultures, samples, etc.) Novel method	Standard included

Aspartame		Cat. No. K-ASPTM
UV-method for the detern foodstuffs, beverages and o	nination of Aspartame (and breakdown products) in other materials	Advantages
Principle: (pH ∣2.5) (I) Asp-Phe-O-Me → Asp	-Phe + MeOH	 Very cost effective All reagents stable for > 12 months after preparation
(dipeptidase M) (2) Asp-Phe + $H_2O \rightarrow L$ -aspartate + L-phenylalanine		Only enzymatic kit availableMeasures aspartame
(glutamate-oxaloacetate transaminase) (3) L-Aspartate + 2-oxoglutarate → L-glutamate + oxaloacetate (L-malate dehydrogenase)		and breakdown products (L-aspartate and aspartame acid)
(4) Oxaloacetate + NADH + H ⁺ \rightarrow L-malate + NAD ⁺		Very specific
Kit size: Method: Reaction time: Detection limit: Application examples:	50 assays (manual) / 500 (microplate) / 500 (auto-analyser) Spectrophotometric at 340 nm ~ 5 min 0.57 mg/L Soft drinks, artificial sweeteners, candies, mints, chewing	 Very rapid reaction Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
Method recognition:	gum, dietetic products, jam, chocolate and other materials Novel method	 Standard included Suitable for manual, microplate and auto- analyser formats

Available Carbohydrates / Dietary Fiber

An integrated procedure for the measurement of Available Carbohydrates and Dietary Fiber in cereal products, fruit and vegetables and food products

Principle (Dietary Fiber):

 $(\alpha$ -amylase + amyloglucosidase) (I) Starch + H₂O \rightarrow glucose

(protease)

(2) Protein + $H_2O \rightarrow$ peptides

(3) Dietary fiber determined gravimetrically following alcohol precipitation

Principle (Available Carbohydrates):

(sucrase / maltase + ß-galactosidase)

(4) Sucrose, maltose and lactose \rightarrow D-glucose + D-fructose + D-galactose

(PGI, hexokinase and glucose-6-phosphate dehydrogenase)
(5) D-Glucose + D-fructose + ATP + NADP⁺ → gluconate-6-phosphate + NADPH + ADP + H⁺

Kit size:100 assays of eachApplication examples:Food ingredients, food products and other materialsMethod recognition:Dietary Fibre - AOAC (Methods 985.29, 991.42, 991.43
and 993.19) and AACC (Methods 32-05.01, 32-07.01 and

Cat. No. K-ACHDF

Advantages

- Very cost effective
- All reagents stable for > 2 years after preparation
- High purity / standardised enzymes employed
- Only kit available
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Simple format

endo-1,4-β-Glucanase (cellulase)

Colourimetric method for the determination of endo-1,4- β -glucanase (cellulase) in enzyme preparations and fermentation products

32-21.01)

Principle:

 $(endo-1,4-\beta-glucanase)$ (1) Benzylidene-G₃- β -CNP + H₂O \rightarrow Blocked-G_x + G_(3-x)- β -CNP

(thermostable β-glucosidase) (2) $G_{(3-x)}$ -β-CNP + $H_2O \rightarrow D$ -glucose + CNP

(alkaline solution) (3) CNP \rightarrow phenolate ion (yellow colour)

Note: CNP = 2-Chloro-4-nitrophenol

Kit size:	180 / 360 assays	
Method:	Spectrophotometric at 400 nm	
Total assay time:	~ 20 min	
Detection limit:	0.05 U/mL	
Application examples:	Fermentation broths, industrial enzyme preparations,	
	biofuels research	
Method recognition:	Novel method	
Note:	The analogous fluorimetric reagent (R-CELLF) is also available with 10-fold greater sensitivity.	

Cat. No. K-CELLG3

- Cost effective
- All reagents stable for
 2 years after preparation
- Completely specific for cellulase (endo-1,4glucanase). The substrate is not hydrolysed by β-glucosidase, cellobiohyrolase or any other enzymes tested
- Kinetic assays possible due to significant phenolate ion presence (and UV absorbance) at pH 5-6
- Simple format. Well suited to automation
- Standard included

Citric Acid

Cat. No. K-CITR

UV-method for the detern materials	nination of Citric Acid in foods, beverages and other	Advantages
Principle: (citrate lyase) (I) Citrate → oxaloaceta	te + acetate	 Reconstituted citrate stable for 4 weeks a 6 months at -20°C
l l	alate dehydrogenase) + H⁺ → L-malate + NAD⁺	 Buffer / cofactor / el tablets for efficient u kit components
(D-lactate de (3) Pyruvate + NADH + H*	hydrogenase) → D-lactate + NAD ⁺	 PVP incorporated to prevent tannin inhib
Kit size: Method: Reaction time:	72 assays (manual) / 720 (microplate) / 840 (auto-analyser) Spectrophotometric at 340 nm ~ 5 min	 Very competitive pr per test)
Detection limit: Application examples:	0.921 mg/L Grape juice, wine, beer, fruit juices, soft drinks, tea, dairy products (e.g. cheese), meat, processed meat, vegetable and fruit products, bakery products, paper,	 Mega-Calc[™] softwar tool is available fron website for hassle-fr data processing
Method recognition:	pharmaceuticals, cosmetics and other materials (e.g. biological cultures, samples, etc.) Methods based on this principle have been accepted by MEBAK, OIV, EU, ISO2963, AOAC and IFU22	 Standard included Extended cofactors Suitable for manual,

(Note: If the enzyme oxaloacetate decarboxylase is present in the sample, some of the oxaloacetate product is converted to pyruvate. Therefore, to ensure citric acid is measured quantitatively, D-lactate dehydrogenase (D-LDH) is employed to efficiently convert any pyruvate produced into D-lactate and NAD⁺).

Ethanol

UV-method for the determination of Ethanol in foodstuffs, beverages, and other materials

Principle:

(alcohol dehydrogenase) (I) Ethanol + NAD⁺ \leftrightarrow acetaldehyde + NADH + H⁺

(aldehyde dehydrogenase) (2) Acetaldehyde + NAD⁺ + H₂O \rightarrow acetic acid + NADH + H⁺

Kit size:	60 assays (manual) / 600 (microplate) / 600 (auto-analyser)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 5 min
Detection limit:	0.093 mg/L
Application examples:	Wine, beer, cider, alcoholic fruit juices, spirits, liqueurs,
	low-alcoholic / non-alcoholic beverages, pickles, fruit
	and fruit juice, chocolate products, vinegar, jam, bread
	and bakery products, honey, soy sauce, dairy products,
	cosmetics, pharmaceuticals and other materials (e.g.
	biological cultures, samples, etc.)
Method recognition:	Methods based on this principle have been accepted by
	IFU, EBC, MEBAK, ASBC

- te lyase at 4°C /
- enzyme use of
- to ibition
- orice (cost
- are m our free raw
- s stability
- microplate and autoanalyser formats

Cat. No. K-ETOH

- Simple format aldehyde dehydrogenase supplied as stable suspension
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- · Rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- · Standard included
- Extended cofactors stability
- Suitable for manual, microplate and autoanalyser formats

Total Dietary Fiber

For the determination of Total Dietary Fiber in cereal products, foodstuffs, feeds and other materials

Principle:

 $(\alpha$ -amylase + amyloglucosidase) (I) Starch + H₂O \rightarrow D-glucose (protease) (2) Protein + H₂O \rightarrow peptides

- (3) Dietary fiber determined gravimetrically following alcohol precipitation
- (4) Ash and residual protein determined on DF residues and subtracted

Kit size:	200 assays
Method:	Hydrolysis / removal of non-dietary fibre components
Total assay time:	~ 100 min
Detection limit:	0.5-100% of sample weight
Application examples:	Food ingredients, food products and other materials
Method recognition:	AOAC (Methods 985.29, 991.42, 991.43 and 993.19),
	AACC (Methods 32-05.01, 32-06.01, 32-07.01 and
	32-21.01) and CODEX (Type 1 Method)

Cat. No. K-TDFR

Advantages

- Very competitive price (cost per test)
- All reagents stable for > 2 years
- High purity / standardised enzymes employed
- Mega-CalcTM software tool is available from our website for hassle-free raw data processing
- Simple format

Total Dietary Fiber (Integrated)

For the determination of Total Dietary Fiber in cereal products, foodstuffs, feeds and other materials. CODEX Type I method (2011)

Principle:

(Pancreatic α -amylase + amyloglucosidase) (I) Non-resistant starch + H₂O \rightarrow D-glucose

(protease) (2) Protein + $H_2O \rightarrow$ peptides

(3) IDF (including resistant starch) and alcohol precipitated soluble DF (SDFP) determined gravimetrically

(4) Alcohol soluble DF (SDFS) determined by HPLC

(5) Ash and residual protein determined on DF residues and subtracted

Kit size:	100 assays
Method:	Hydrolysis / removal of non-dietary fibre components
Total assay time:	~ 3 hr work (over 2 days)
Detection limit:	0.5-100% of sample weight
Application examples:	Food ingredients, food products and other materials
Method recognition:	AOAC (Methods 2009.01; 2011.25)
	AACC (Method 32-45.01; 32-50.01)
	CODEX (Type I method)

Cat. No. K-INTDF

- The only method that is consistent with the CODEX Alimentarius definition of dietary fibre
- High purity / standardised enzymes employed
- All reagents stable for > 2 years
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Very competitive price (cost per test)

Formic Acid

Cat. No. K-FORM

UV-method for the determination of Formic Acid in foods, beverages and other materials

Principle:

(formate dehydrogenase) (I) Formic acid + NAD⁺ \rightarrow CO₂ + NADH + H⁺

Kit size:	25 assays (manual) / 250 (microplate) /250 (auto-analyser)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 12 min
Detection limit:	0.0932 mg/L
Application examples:	Wine, fruit juices, pickles, vinegar, jam, bakery products, honey, fish, meat and other materials (e.g. biological
	cultures, samples, etc.)
Method recognition:	Methods based on this principle have been accepted by MEBAK

Advantages

- No wasted formate dehydrogenase solution (stable suspension supplied)
- Pyrazole incorporated to prevent alcohol dehydrogenase interference
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- · Standard included
- Suitable for manual, microplate and autoanalyser formats

Fructan (Hexokinase format)

UV-method for the determination of Fructan in foodstuffs, beverages and other materials

Principle:

(sucrase + maltase)(I) Sucrose + maltosaccharides + H₂O \rightarrow D-glucose + D-fructose

(*exo*-inulinase + *endo*-inulinase) (2) Fructan + H,O → D-glucose + D-fructose

(hexokinase) (3) D-Glucose + D-fructose + ATP \rightarrow G-6-P + F-6-P + ADP

(glucose-6-phosphate dehydrogenase) (4) G-6-P + NADP⁺ → gluconate-6-phosphate + NADPH + H⁺

(phosphoglucose isomerase) (5) F-6-P ↔ G-6-P

Kit size:	50 assays
Method:	Spectrophotometric at 340 nm
Total assay time:	~ 90 min
Detection limit:	I-100% of sample weight
Application examples:	Flours, plant materials (e.g. onion), food products and
	other materials
Method recognition:	This method is a modification of AOAC Method 999.03
	and AACC Method 32-32.01

Cat. No. K-FRUCHK

- Very cost effective
- All reagents stable for > 12 months after preparation
- Fructan kits are available only from Megazyme
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standards included

Cat. No. K-FRUC

Fructan (PAHBAH format)

Colourimetric method for foodstuffs and other mate	r the determination of Fructan in plant products, erials	Advantages
Principle:		• Very cost effective
(I) Sucrose + $H_2O \rightarrow D$ -	-glucose + D-fructose	 All kit reagents stable for > 2 years after preparation
(β-amylase + maltase + pullulanase) (2) Starch + maltosaccharides + $H_2O \rightarrow D$ -glucose		Unaffected by high sucrose / reducing sugar
	rrohydride) e → D-sorbitol + D-mannitol (non-reducing)	 Fructan kits are only
(exo-inulinase + endo-inulinase) (4) Fructan + H₂O → D-glucose + D-fructose		available from MegazymeSimple format
(100°C, 6 min) (5) D-Glucose + D-fructose + PAHBAH \rightarrow PAHBAH colour complex		 Mega-Calc[™] software tool is available from our website for hassle-free raw
Kit size:	100 assays	data processing
Method:	Spectrophotometric at 410 nm	Standards included
Total assay time:	~ 90 min	
Detection limit:	I-100% of sample weight	
Application examples:	Flours, plant materials (e.g. onion), food products and other materials	
Method recognition:	AOAC (Method 999.03), AACC (Method 32-32) and	

D-Fructose / D-Glucose

UV-method for the determination of D-Fructose and D-Glucose in foodstuffs, beverages and other materials

CODEX (Type III Method)

Principle:

- (hexokinase) (I) D-Glucose + ATP \rightarrow G-6-P + ADP (hexokinase)
- (2) D-Fructose + ATP \rightarrow F-6-P + ADP

(glucose-6-phosphate dehydrogenase)

```
(3) G-6-P + NADP<sup>+</sup> \rightarrow gluconate-6-phosphate + NADPH + H<sup>+</sup>
```

(phosphoglucose isomerase) \leftrightarrow G-6-P

```
(4) F-6-P
```

Kit size:

	analyser
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 13 min
Detection limit:	0.66 mg/L
Application examples:	Wine, beer, fruit juices, soft drinks, milk, jam, honey,
	dietetic foods, bread, bakery products, candies, desserts,
	confectionery, ice-cream, fruit and vegetables, condiments,
	tobacco, cosmetics, pharmaceuticals, paper and other
	materials (e.g. biological cultures, samples, etc.)
Method recognition:	Methods based on this principle have been accepted
	by AOAC, EN, NEN, NF, DIN, GOST, OIV, IFU, AIJN,
	MEBAK, IOCCC

110 assays (manual) / 1100 (microplate) / 1100 (auto-

Cat. No. K-FRUGL

- PVP incorporated to prevent tannin inhibition
- Validated by the University of Wine, Suze la Rousse, France
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation (manual analysis applications)
- Rapid reaction at either 25 or 37°C
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- · Standards included
- Extended cofactors stability
- Suitable for manual, microplate and auto-analyser formats

(phosphoglucose isomerase)

 \leftrightarrow

(hexokinase)

(hexokinase)

G-6-P

(glucose-6-phosphate dehydrogenase)

other materials

(I) D-Glucose + ATP

(2) D-Fructose + ATP

Principle:

(4) F-6-P

Dair

Brewing

D-Fructose / D-Glucose Liquid Ready Reagents

UV-method suitable for auto-analyser and microplate formats for the

 \rightarrow G-6-P + ADP

 \rightarrow F-6-P + ADP

(3) G-6-P + NADP⁺ \rightarrow gluconate-6-phosphate + NADPH + H⁺

determination of D-Fructose and D-Glucose in foodstuffs, beverages and

by AOAC, EN, NEN, NF, DIN, GOST, OIV, IFU, AIJN, MEBAK, IOCCC

D-Fru [™] format)

Simple col ation of D-Fructose and **D-Glucose** other materials

(hexokinase) (I) D-Glucose + ATP \rightarrow G-6-P + ADP (hexokinase) \rightarrow F-6-P + ADP (phosphoglucose isomerase) G-6-P ⇔ (glucose-6-phosphate dehydrogenase) (4) G-6-P + NADP⁺ → gluconate-6-phosphate + NADPH + H⁺ (diaphorase) (5) INT + NADPH + H⁺ → NADP⁺ + INT-formazan Kit size: 60 assays **Method:** Spectrophotometric at 505 nm **Reaction time:** ~ 10 min **Detection limit:** 15.4 mg/L **Application examples:** Grape juice / must, wine, beer, fruit juices, soft drinks, milk, jam, honey, dietetic foods, bread, bakery products, candies, desserts, confectionery, ice-cream, fruit and vegetables, condiments, tobacco, cosmetics, pharmaceuticals, paper and other materials (e.g. biological cultures, samples, etc.) Novel method

Cat. No. K-FRGLMQ

Advantages

- Novel product, patented technology
- Spectrophotometer / laboratory expertise not required
- · Highly stable reagents (at least three seasons use)
- Very competitive price (cost per test)
- Very simple procedure
- Rapid reaction time (~ 10 min)
- · Standard included

Method recognition:

Cat. No. K-FRGLQR

Advantages

- PVP incorporated to prevent tannin inhibition
- "Ready to use" liquid stable formulation
- Very competitive price (cost per test)
- All reagents stable for > 2 years
- Very rapid reaction (~ 13 min)
- Standard included
- · Suitable for microplate and auto-analyser formats

egazvme

Principle:

- (2) D-Fructose + ATP

(3) F-6-P

L-Fucose

Principle:

UV-method for the determination of L-Fucose in plant material, polysaccharides, pharmaceuticals and other materials

(L-fucose dehydrogenase)		
(I) L-Fucose + NADP ⁺ \rightarrow L-fucono-I,5-lactone + NADPH + H ⁺		
Kit size:	100 assays (manual) / 1000 (microplate) / 1020 (auto-	
	analyser)	
Method:	Spectrophotometric at 340 nm	
Reaction time:	~ 10 min	
Detection limit:	15.4 mg/L	
Application examples:	L-Fucose is present as the main component in fucoidan (a	
	marine polysaccharide), foods, pharmaceuticals and other	
	materials (e.g. biological samples, etc.)	
Method recognition:	Novel method	

Cat. No. K-FUCOSE

Advantages

- Very cost effective
- All reagents stable for > 2 years after preparation
- Only enzymatic kit available
- Simple format
- Rapid reaction time (~ 10 min)
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

Galactomannan

UV-method for the determination of Galactomannan in legume seeds, foodstuffs and plant products

Principle:

(β-mannanase) (I) Galactomannan + $H_2O \rightarrow$ galactomanno-oligomers

(β -mannanase + α -galactosidase)

(2) Galactomanno-oligomers + $H_2O \rightarrow D$ -galactose + manno-oligomers

(β-galactose dehydrogenase)

(3) D-Galactose + NAD⁺ \rightarrow D-galactonic acid + NADH + H⁺

Kit size:	100 assays
Method:	Spectrophotometric at 340 nm
Total assay time:	~ 80 min
Detection limit:	I-100% of sample weight
Application examples:	Seeds, milling fractions and food ingredients
Method recognition:	Novel method

Cat. No. K-GALM

- Galactose dehydrogenase now included in the kit
- Very cost effective
- All reagents stable for > 2 years after preparation
- Only enzymatic kit available
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

β-Glucan (Mixed linkage)

Colourimetric method for the determination of β-Glucan in cereal grains, feed, foodstuffs, beverages and other materials Principle: (lichenase)

(I) β -Glucan + H₂O $\rightarrow \beta$ -gluco-oligosaccharides

 $(\beta$ -glucosidase) (2) β -Gluco-oligosaccharides + H₂O \rightarrow D-glucose

(glucose oxidase) (3) D-Glucose + $H_2O + O_2 \rightarrow D$ -gluconate + H_2O_2

(peroxidase)

(4) $2H_2O_2 + p$ -hydroxybenzoic acid + 4-aminoantipyrine \rightarrow quinoneimine + $4H_2O_2$

Kit size: Method: Total assay time: Detection limit: Application examples: Method recognition:

100 assays
Spectrophotometric at 510 nm
~ 100 min
0.5-100% of sample weight
Oats, barley, malt, wort, beer, food and other materials
AOAC (Method 995.16), AACC (Method 32-23.01), EBC (Methods 3.11.1, 4.16.1 and 8.11.1), ICC (Standard No. 166), RACI (Standard Method) and CODEX (Type II

egazvme

Advantages

- Very cost effective
- All reagents stable for > 2 years as supplied
- Only enzymatic kit available
- Very specific
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standards included

β -Glucan (Yeast and mushroom)

Colourimetric method for the determination of Yeast and Mushroom $\beta\text{-}Glucan$ in yeast, mushroom, foodstuffs and other materials

Method)

Principle:
(conc. HCl, 30°C, 45 min)
(I) I,3:I,6- β -Glucan + I,3- β -glucan + α -glucan + H ₂ O \rightarrow soluble glucan
(1.3 M HCl, 100°C, 2 h)
(2) Soluble glucan + $H_2O \rightarrow D$ -glucose + laminarisaccharides (trace)
(exo-1,3- β -glucanase + β -glucosidase)
(3) Laminarisaccharides + $H_2O \rightarrow D$ -glucose
(glucose oxidase)
(4) D-Glucose + $H_2O + O_2 \rightarrow D$ -gluconate + H_2O_2
(peroxidase)
(5) $2H_2O_2 + p$ -hydroxybenzoic acid + 4-aminoantipyrine \rightarrow quinoneimine + $4H_2O_2$
(amyloglucosidase)

(6) α -Glucan + H O \rightarrow D-glucose

Kit size:	100 assays
Method:	Spectrophotometric at 510 nm
Total assay time:	~ 100 min
Detection limit:	I-100% of sample weight
Application examples:	Yeast preparations, mushroom preparations and other materials
Method recognition:	Novel method

Cat. No. K-YBGL

- Very cost effective
- All reagents stable for > 12 months after preparation
- Only enzymatic kit available
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standards included

β-Glucan (Yeast-Enzymatic)

Colourimetric method for the enzymatic determination of yeast β -Glucan and also (I-3)- β Glucans.

Principle: $(KOH, 4^{\circ}C, 30 \text{ min})$ (1) 1,3:1,6- β -Glucan + 1,3- β -glucan + H₂O \rightarrow soluble glucan (Glucazyme, 40°C, 16 h) (2) Soluble glucan + H₂O \rightarrow D-glucose (glucose oxidase) (3) D-Glucose + H₂O + O₂ \rightarrow D-gluconate + H₂O₂

(peroxidase)

(4) $2H_2O_2 + p$ -hydroxybenzoic acid + 4-aminoantipyrine \rightarrow quinoneimine + $4H_2O$

Kit size:	50 assays
Method:	Spectrophotometric at 510 nm
Reaction time:	~ 100 min
Detection limit:	I-100% of sample weight
Application examples:	Yeast preparations and other materials
Method recognition:	Novel method

Cat. No. K-EBHLG

Advantages

- Very competitive price (cost per test)
- All reagents stable for > 12 months after preparation
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

β-Glucanase (Malt and microbial)

Colourimetric method for the determination of $\beta\text{-}Glucanase$ in malt, foodstuffs and fermentation products

Principle:

 $(\beta-glucanase)$ (I) Azo-Barley β -glucan (polymer) \rightarrow Azo-barley β -glucan (fragments)

(2) Add alcohol; centrifuge to remove polymeric Azo-barley β -glucan

(3) Measure the absorbance of the supernatant solution

Kit size:	100 assays
Method:	Spectrophotometric at 590 nm
Total assay time:	~ 30 min
Detection limit:	100 U/kg of malt
Application examples:	Malt extracts, wort, beer and other materials
Method recognition:	RACI (Standard Method)

Cat. No. K-MBGL

- Very cost effective
- All reagents stable for > 2 years during use
- Only kit available
- Very specific
- Simple format
- Standard included

Glucomannan

UV-method for the determination of Glucomannan in plant products, foodstuffs and other materials

Principle: $(\beta$ -mannanase) (I) Ac-Glucomannan + $H_0 \rightarrow$ Ac-glucomanno-oligomers (pH 12.5) (2) Ac-Glucomanno-oligomers + $H_2O \rightarrow$ glucomanno-oligomers + acetate $(\beta$ -glucosidase + β -mannosidase) (3) Glucomanno-oligomers + $H_2O \rightarrow D$ -glucose + D-mannose (hexokinase) (4) D-glucose + D-mannose + ATP \rightarrow G-6-P + M-6-P + ADP (glucose-6-phosphate dehydrogenase) (5) G-6-P + NADP⁺ \rightarrow gluconate-6-phosphate + NADPH + H⁺ (phosphomannose isomerase) (phosphoglucose isomerase) (6) M-6-P \leftrightarrow F-6-P G-6-P \leftrightarrow Kit size: 50 assays Method: Spectrophotometric at 340 nm 120 min **Total assay time: Detection limit:** I-100% of sample weight **Application examples:** Jelly sweets, cosmetics, food gums and other materials **Method recognition:** Novel method

Cat. No. K-GLUM

Advantages

- Very cost effective
- Only enzymatic kit available
- Simple format
- All reagents stable for > 2 years after preparation
- Mega-CalcTM software tool is available from our website for hassle-free raw data processing
- Standard included

Food Feed Wine Biofuels

D-Gluconic Acid / D-Glucono-δ-lactone

UV-method for the determination of D-Gluconic Acid and D-Glucono- δ -lactone in foodstuffs, beverages and other materials

Principle:

(gluconate kinase) (I) D-Gluconate + ATP → gluconate-6-phosphate + ADP

(gluconate-6-phosphate dehydrogenase)

(2) Gluconate-6-phosphate + NADP⁺ \rightarrow ribulose-5-phosphate + NADPH + CO₂ + H⁺

(pH | |)(3) D-Glucono- δ -lactone + H,O → D-gluconate

Kit size:	60 assays (manual) / 600 (microplate) / 600 (auto- analyser)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 6 min
Detection limit:	0.5 mg/L
Application examples:	Wine, meat, processed meat (e.g. additives), fruit
	juice, dairy products, pharmaceuticals, paper and other
	materials (e.g. biological cultures, samples, etc.)
Method recognition:	Methods based on this principle have been accepted by
	ISO, DIN, GOST

Cat. No. K-GATE

- All reagents stable for > 2 years after preparation
- Very competitive price (cost per test)
- Very rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Extended cofactors stability
- Suitable for manual, microplate and autoanalyser formats

D-Glucosamine (plus Glucosamine-Sulphate and -Acetate) Cat. No. K-GAMINE

UV-method for the determination of D-Glucosamine, D-Glucosamine sulphate and N-Acetyl Glucosamine in food supplements, foodstuffs, beverages and other materials

Principle:

(desulphation)				
(I) Glucosamine sulphate \rightarrow D-glucosamine + sulphate				
(deacetylation)				
(2) N-Acetyl Glucosamine \rightarrow D-glucosamine + acetate				
(hexokinase)				
(3) D-Glucosamine + ATP \rightarrow D-glucosamine-6-P + ATP				
(glucosamine 6-phosphate deaminase)				
(4) D-Glucosamine-6-P + $H_2O \rightarrow D$ -fructose-6-P + NH_4^+				

(phosphoglucose isomerase)

(5) F-6-P ↔ G-6-P

(glucose-6-phosphate dehydrogenase) (6) $\mathbf{G} \leftarrow \mathbf{B} + \mathbf{N} \wedge \mathbf{D} \mathbf{B}^{\dagger} \rightarrow \mathbf{glucopate} \leftarrow \mathbf{h} \wedge \mathbf{D} \mathbf{B} \mathbf{H} + \mathbf{h} \wedge \mathbf{D} \mathbf{B} \mathbf{H}$

(6) G-6-P + NADP⁺ \rightarrow gluconate-6-phosphate + NADPH + H⁺

Method:	Spectrophotometric at 340 nm
Reaction time:	~ 8 min
Detection limit:	1.33 mg/L
Application examples:	Food supplements, food products and beverages
Method recognition:	Novel method

D-Glucose (GOPOD format)

Colourimetric method for the determination of D-Glucose in foodstuffs, beverages and other materials

Principle:

(glucose oxidase) (I) D-Glucose + $H_2O + O_2 \rightarrow D$ -gluconate + H_2O_2

(peroxidase)

(2) $2H_2O_2 + p$ -hydroxybenzoic acid + 4-aminoantipyrine \rightarrow quinoneimine + $4H_2O$

Kit size:	660 assays
Method:	Spectrophotometric at 510 nm
Reaction time:	~ 20 min
Detection limit:	100 mg/L
Application examples:	Wine, beer, fruit juices, soft drinks, milk, jam, dietetic
	foods, bakery products, candies, fruit and vegetables, tobacco, cosmetics, pharmaceuticals, feed, paper and other materials (e.g. biological cultures, samples, etc.)
Method recognition:	Widely used and accepted in clinical chemistry and food analysis

Advantages

- Novel product with simple format
- All reagents stable for > 2 years after preparation
- All enzymes supplied as stable suspensions
- Very rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

Cat. No. K-GLUC

- All reagents stable for > 12 months after preparation
- Very competitive price (cost per test)
- Simple format
- Standard included

D-Glucose (Hexokinase format)

 $\ensuremath{\text{UV}}\xspace$ materials

••

Dairy

Biofuel

Pri	ncip	le:
	-Cip	· • •

· · · · · · · · · · · · · · · · · · ·		
(hexokina:	se)	
(I) D-Glucose + ATP \rightarrow	G-6-P + ADP	•
(glucose-6-phosphate	dehydrogenase)	
	conate-6-phosphate + NADPH + H ⁺	
(_) = = = = = = = = = = = = = = = = = = =		•
Kit size:	(K-GLUHKR) 110 assays (manual) / 1100 (microplate) /	•
	1000 (auto-analyser) or	
	(K-GLUHKL) 220 assays (manual) / 2200 (microplate) /	
	2000 (auto-analyser)	
Method:	Spectrophotometric at 340 nm	•
Reaction time:	~ 5 min	•
Detection limit:	0.66 mg/L	
Application examples:	Wine, beer, fruit juices, soft drinks, milk, jam, dietetic	
	foods, bakery products, candies, fruit and vegetables,	
	tobacco, cosmetics, pharmaceuticals (e.g. infusions), feed,	
	paper (and cardboard) and other materials (e.g. biological	
	cultures, samples, etc.)	
Method recognition:	Methods based on this principle have been accepted	
	by AOAC, EN, NEN, NF, DIN, GOST, OIV, IFU, AIJN,	
	MEBAK	

Cat. No. K-GLUHK

Advantages

- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Extended cofactors stability
- Suitable for manual, microplate and autoanalyser formats

Food Fermentation

Glucose Oxidase

Colourimetric method for the determination of Glucose Oxidase in foodstuffs and fermentation products

Principle:

(glucose oxidase) (I) D-Glucose + $H_2O + O_2 \rightarrow D$ -glucono- δ -lactone + H_2O_2

(peroxidase)

(2) $2H_2O_2 + p$ -hydroxybenzoic acid + 4-aminoantipyrine \rightarrow quinoneimine + $4H_2O$

Kit size:	200 assays (manual) / 2000 (microplate) / 1960 (auto- analyser)
Method:	Spectrophotometric at 510 nm
Reaction time:	~ 20 min
Detection limit:	10 U/L
Application examples:	Enzyme preparations, and other materials
	(e.g. biological cultures, samples, etc.)
Method recognition:	Novel method

Cat. No. K-GLOX

- Very competitive price (cost per test)
- All reagents stable for > 12 months after preparation
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

D-Glucuronic Acid / D-Galacturonic Acid

UV-method for the determination of D-Glucuronic Acid or D-Galacturonic Acid in hydrolysates of plant material and polysaccharides and other materials

in hydrolysates of plant material and polysaccharides and other materials		
Principle: (Uron:	ate dehydrogenase; UDH)	
(I) D-Glucuronic acid + NAD	$D^* + H_2O \rightarrow D$ -glucarate + NADH + H ⁺	
(Uronate dehydrogenase; UDH)		
(2) D-Galacturonic acid + NAD ⁺ + $H_2O \rightarrow D$ -galactarate + NADH + H ⁺		
Kit size:	100 assays (manual) / 1000 (microplate) / 1000 (auto-	
	analyser)	
Method:	Spectrophotometric at 340 nm	
Total assay time:	~ 10 min at 25°C or ~ 5 min at 37°C	
Detection limit:	~ 17 mg/L	
Application examples:	Hydrolysates of plant material and polysaccharides and	
	other materials	
Method recognition:	Novel method	

Cat. No. K-URONIC

Advantages

- Very cost effective
- All reagents stable for > 2 years during use
- Only test kit available
- Simple format
- Mega-CalcTM software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

α -Glucuronidase

UV-method for the measurement of $\alpha\mbox{-}\textsc{D-}\mbox{Glucuronidase}$ in various enzyme preparations

Principle:

 $\begin{array}{l} (\alpha\text{-D-glucuronidase})\\ \textbf{(I) Aldouronic acid (tri:tetra:penta) + H_{2}O \rightarrow}\\ \beta\text{-(I,4)-D-xylo-oligosaccharides + D-glucuronic acid} \end{array}$

(uronate dehydrogenase; UDH) (2) D-Glucuronic acid + NAD⁺ + H₂O → D-glucarate + NADH + H⁺

Kit size:	50 assays (manual) / 200 (microplate)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 25 min
Detection limit:	I7 mU/mL
Application examples:	Enzyme preparations and other materials
Method recognition:	Novel method

Cat. No. K-AGLUA

- Very competitive price (cost per test)
- All reagents stable for > 2 years as supplied
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual and microplate formats

L-Glutamic Acid

Colourimetric method for the determination of L-Glutamic Acid (Monosodium Glutamate; MSG) in foodstuffs and other materials

D	•	1
Pri	ncip	le:

Principle:		
(beef liver glutamate dehydrogenase)		
(I) L-Glutamic acid + NAD ⁺	+ $H_2O \Leftrightarrow 2$ -oxoglutarate + NADH + NH_4^+	
(diaphorase)		
(2) INT + NADH + $H^* \rightarrow N_{i}$	AD ⁺ + INT-formazan	
Kit size:	60 assays (manual) / 600 (microplate) / 700 (auto-analyser)	
Method:	Spectrophotometric at 492 nm	
Reaction time:	~ 9 min	
Detection limit:	0.21 mg/L	
Application examples:	Fruit and vegetables (e.g. tomato), processed fruit and	
	vegetables (e.g. tomato puree / juice, ketchup, soy sauce),	
	condiments, processed meat products (e.g. extracts,	
	bouillon and sausages), soup, pharmaceuticals and other	
	materials (e.g. biological cultures, samples, etc.)	
Method recognition:	Methods based on this principle have been accepted by	

ISO, GOST, NMKL

Method recognition:

L-Glutamine / Ammonia (Rapid)

UV-method for the determination of L-Glutamine and Ammonia in cell culture media, foodstuffs and other materials

Principle:

(glutaminase) (I) L-Glutamine + $H_2O \rightarrow L$ -glutamate + NH_4^+

(microbial glutamate dehydrogenase) (2) $NH_4^+ + 2$ -Oxoglutarate + NADPH \rightarrow L-glutamate + NADP⁺ + H₂O

Kit size:	50 assays of each
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 15 min
Detection limit:	0.54 mg/L (L-glutamine)
	0.06 mg/L (ammonia)
Application examples:	Cell culture media and cultures, dietary supplements,
	vegetables and other materials (e.g. biological samples,
	etc.)
Method recognition:	Novel method

Cat. No. K-GLUT

egazvme

Advantages

- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Glutamate dehydrogenase solution stable at -20°C
- No wasted diaphorase solution (stable suspension supplied)
- Rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

Cat. No. K-GLNAM

- Very rapid reaction due to use of high activity glutaminase and uninhibited glutamate dehydrogenase
- All enzymes supplied as stabilised suspensions
- Only enzymatic kit available
- Very cost effective
- All reagents stable for > 2 years after preparation
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

Glycerol

UV-method for the determination of Glycerol in foodstuffs, beverages and	
other materials	

Principle:

(glycerokinase) (I) Glycerol + ATP → L-glycerol-3-phosphate + ADP (pyruvate kinase) (2) ADP + PEP → ATP + pyruvate (L-lactate dehydrogenase) (3) Pyruvate + NADH + H⁺ → L-lactic acid + NAD⁺

Kit size:	70 assays / 700 (microplate)	•
Method:	Spectrophotometric at 340 nm	
Reaction time:	~ 5 min	
Detection limit:	0.34 mg/L	
Application examples:	Wine (and grape juice), beer, spirits, vinegar, marzipan,	•
	fruit juices, soft drinks, toothpaste, honey, tobacco, paper	
	(and cardboard), cosmetics, pharmaceuticals, soap and	
	other materials (e.g. biological cultures, samples, etc.)	
Method recognition:	Methods based on this principle have been accepted by	
	OIV, MEBAK	

Cat. No. K-GCROL

Advantages

- Novel tablet format for increased stability
- Very competitive price (cost per test)
- All reagents stable for > 2 years as supplied
- · Very rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual and microplate formats

Glycerol (ADP-GK format)

UV-method for the determination of Glycerol in foodstuffs, beverages and other
materials

Principle:

- (glycerokinase)
- (I) Glycerol + ATP \rightarrow L-glycerol-3-phosphate + ADP

(ADP-GK)

(2) ADP + D-glucose \rightarrow G-6-P + AMP

(glucose-6-phosphate dehydrogenase)

(3) G-6-P + NAD⁺ \rightarrow gluconate-6-phosphate + NADH + H⁺

Kit size:	70 assays (manual) / 700 (microplate) / 600 (auto-analyser)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 7 min
Detection limit:	0.37 mg/L
Application examples:	Wine (and grape juice), beer, spirits, vinegar, marzipan,
	fruit juices, soft drinks, toothpaste, honey, tobacco, paper
	(and cardboard), cosmetics, pharmaceuticals, soap and
	other materials (e.g. biological cultures, samples, etc.)
Method recognition:	Novel method

Cat. No. K-GCROLGK

- Novel tablet format for increased stability
- Very competitive price (cost per test)
- All reagents stable for > 2 years as supplied
- Very rapid reaction
- Positive reaction (assay proceeds with an increase in absorbance)
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

D-3-Hydroxybutyric Acid

Colourimetric method for the determination of D-3-Hydroxybutyric Acid in foodstuffs

Principle:

(3-hydroxybutyrate dehydrogenase) (I) D-3-Hydroxybutyrate + NAD $^{+} \leftrightarrow$ acetoacetate + NADH + H $^{+}$ (diaphorase)

(2) INT + NADH + $H^+ \rightarrow NAD^+ + INT$ -formazan

Kit size:	60 assays (manual) / 600 (microplate) / 740 (auto-analyser)
Method:	Spectrophotometric at 492 nm
Reaction time:	~ 3 min
Detection limit:	0.20 mg/L
Application examples:	Egg, egg products (e.g. egg powder) and other materials (e.g. biological cultures, samples, etc.)
Method recognition:	Methods based on this principle have been accepted by CEC

Cat. No. K-HDBA

Advantages

- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Very rapid reaction (~ 3 min)
- No wasted diaphorase solution (stable suspension supplied)
- *Mega-Calc*[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

myo-inositoi		Cat. No. K-INOSL
Colourimetric met sample matrices	hod for the determination of <i>myo</i> -Inositol in various	Advantages
Principle:		Very cost effective
(<i>myo</i> -ind	ositol dehydrogenase)	 Reagents stable for > 2
(I) myo-Inositol + N	$AD^+ \rightarrow 2,4,6/3,5$ -pentahydroxycyclohexanone + NADH +	H ⁺ years after preparation
(diaphorase)		Only enzymatic kit available
(2) INT + NADH +	$H^* \rightarrow NAD^* + INT$ -formazan	• Rapid reaction
Kit size:	50 assays	 Mega-Calc[™] software
Method:	Spectrophotometric at 492 nm	tool is available from our

Method recognition:	Novel method
	materials
Application examples:	Animal feeds, food, baby milk formulation and other
Detection limit:	0.8 mg/L
Reaction time:	~ 10 min
Method:	Spectrophotometric at 492 nm
	,

V INOSI

- website for hassle-free raw data processing
- Standard included

Principle:

Kit size:

Method:

Reaction time:

Detection limit:

Application examples:

Method recognition:

UV-method for the determination of D-Isocitric Acid in foodstuffs

(I) D-Isocitric acid + NADP⁺ \rightarrow 2-oxoglutarate + CO₂ + NADPH + H⁺

(pH 9-10)

100 assays (manual) / 1000 (microplate) / 1000 (auto-

Fruit juices, fruit products, soft drinks and other

materials (e.g. biological cultures, samples, etc.)

EN, NEN, NF, DIN, GOST, IFU, AIJN

Methods based on this principle have been accepted by

(pH 9-10)

analyser)

~ 3 min

0.35 mg/L

Spectrophotometric at 340 nm

(isocitrate dehydrogenase)

(2) D-Isocitric acid ester + $H_2O \rightarrow D$ -isocitric acid + alcohol

(3) D-Isocitric acid lactone + $H_0 \rightarrow D$ -isocitric acid

Cat. No. K-ISOC

Advantages

- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- No wasted isocitrate dehydrogenase solution (stable suspension supplied)
- · Very rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- · Standard included
- Suitable for manual, microplate and autoanalyser formats

D-Lactic Acid

UV-method for the determination of D-Lactic Acid in foodstuffs, beverages and other materials

Principle:

(D-lactate dehydrogenase) (I) D-Lactic acid + NAD⁺ ↔ pyruvate + NADH + H⁺

```
Eactic acid + HAB - * pyruvate + HABH + H
```

(glutamate-pyruvate transaminase) (2) Pyruvate + D-glutamate → D-alanine + 2-oxoglutarate

Kit size:	$E_0 = e_{1} + e_{2} $
KIT SIZE:	50 assays (manual) / 500 (microplate) / 450 (auto-analyser)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 5 min
Detection limit:	0.21 mg/L
Application examples:	Wine, soft drinks, milk, dairy products (e.g. cream, milk
	/ whey powder, cheese, condensed milk and yogurt),
	foods containing milk (e.g. dietetic foods, bakery products,
	baby food, chocolate, sweets and ice-cream), vinegar,
	fruit and vegetables, processed fruit and vegetables, meat
	products, food additives, paper (and cardboard), cosmetics,
	pharmaceuticals and other materials (e.g. biological cultures,
	samples, etc.)
Method recognition:	Methods based on this principle have been accepted by
	DIN, GOST, IDF, EEC, EN, ISO, OIV, IFU, AIJN, MEBAK

Cat. No. K-DATE

- Very rapid reaction with most samples (~ 5 min)
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standards included
- Extended cofactors stability
- Suitable for manual, microplate and autoanalyser formats

D- / L-Lactic Acid

 $\ensuremath{\text{UV}}\xspace$ materials $\ensuremath{\text{UV}}\xspace$ - $\ensuremath{\text{L}}\xspace$ - $\ensuremath{\text{UV}}\xspace$ - $\ensuremath{\text{L}}\xspace$ - \en

Principle:		
(D-lactate dehydrogenase)		
(I) D-Lactic acid + NAD ⁺ \Leftrightarrow	pyruvate + NADH + H⁺	
(L-lactate dehy	/drogenase)	
(2) L-Lactic acid + NAD $^{+} \Leftrightarrow$	pyruvate + NADH + H⁺	
(glutamate-pyr	uvate transaminase)	
(3) Pyruvate + D-glutamate	→ D-alanine + 2-oxoglutarate	
Kit size:	50 assays of each	
Method:	Spectrophotometric at 340 nm	
Reaction time:	~ 10 min (L-lactic acid) and ~ 5 min (D-lactic acid)	
Detection limit:	0.21 mg/L	
Application examples:	Wine, soft drinks, milk, dairy products, foods containing	
	milk (e.g. dietetic foods, bakery products, baby food,	
	chocolate, sweets and ice-cream), vinegar, fruit and	
	vegetables, processed fruit and vegetables, meat	
	products, food additives, paper (and cardboard),	
	cosmetics, pharmaceuticals and other materials (e.g.	
	biological cultures, samples, etc.)	
Method recognition:	Methods based on this principle have been accepted by	
rection recognition.	DIN, GOST, IDF, EEC, EN, ISO, OIV, IFU, AIJN, MEBAK	
	D $(\mathbf{v}, \mathbf{U}, \mathbf{U})$, D (\mathbf{U}, \mathbf{U}) , D (\mathbf{v}, \mathbf{U}) ,	

Cat. No. K-DLATE

Advantages

- Rapid total analysis time (concurrent / flexible Dand L-lactic acid reaction format)
- D-lactate dehydrogenase reaction very rapid with most samples (~ 5 min)
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standards included
- Extended cofactors stability

Food Fermentation Wine Dairy Biofuels

L-Lactic Acid

UV-method for the determination of L-Lactic Acid in foodstuffs, beverages and other materials

Principle:

(L-lactate dehydrogenase) (I) L-Lactic acid + NAD⁺ ↔ pyruvate + NADH + H⁺

(glutamate-pyruvate transaminase) (2) Pyruvate + D-glutamate → D-alanine + 2-oxoglutarate

Kit size:	50 assays (manual) / 450 (microplate) / 500 (auto- analyser)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 10 min
Detection limit:	0.21 mg/L
Application examples:	Wine, beer, soft drinks, milk, dairy products (e.g. cream, milk / whey powder, cheese, condensed milk and yogurt), foods containing milk (e.g. dietetic foods, bakery products, baby food, chocolate, sweets and ice-cream), egg, egg products (e.g. egg powder), baking additives, vinegar, fruit and vegetables, processed fruit and vegetables (e.g. tomatoes), meat products, food additives, feed, paper (and cardboard), cosmetics, pharmaceuticals and other materials (e.g. biological cultures, samples, etc.)
Method recognition:	Methods based on this principle have been accepted by DIN, GOST, IDF, EEC, EN, ISO, OIV, IFU, AIJN, MEBAK

Cat. No. K-LATE

- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Extended cofactors stability
- Suitable for manual, microplate and autoanalyser formats

Lactose / D-Galactose (Rapid)

UV-method for the determin beverages and other materia	nation of Lactose and D-Galactose in foodstuffs, als	Advantage
Principle: (β -galactosidase) (I) Lactose + H ₂ O $\rightarrow \beta$ -D-g (galactose mutaro (2) α -D-Galactose \leftrightarrow	tase) β-D-galactose	 Very rapidue to incomplete to i
	dehydrogenase) → D-galactonic acid + NADH + H⁺	per test)All reager
Kit size: Method: Reaction time: Detection limit: Application examples:	 115 assays Spectrophotometric at 340 nm ~ 15 min 2.96 mg/L (lactose) Milk, dairy products (e.g. cream, milk / whey powder, cheese, condensed milk and yogurt), foods containing milk (e.g. dietetic foods, bakery products, baby food, chocolate, sweets and ice-cream), food additives, feed, cosmetics, pharmaceuticals and other materials (e.g. biological cultures, samples, etc.) 	 Mega-Calc tool is ava website fo data proc Standard
Method recognition:	Methods based on this principle have been accepted by AOAC, NBN, DIN, GOST, IDF	

Lactose / Sucrose / D-Glucose

Colourimetric method for the determination of Lactose, Sucrose and D-Glucose in foodstuffs, beverages and other materials

Principle:

(invertase) (I) Sucrose + $H_2O \rightarrow D$ -glucose + D-fructose

(β-galactosidase) (2) Lactose + $H_2O \rightarrow D$ -glucose + D-galactose

(glucose oxidase) (3) D-Glucose + $H_2O + O_2 \rightarrow D$ -gluconate + H_2O_2

(peroxidase)

(4) $2H_2O_2 + p$ -hydroxybenzoic acid + 4-aminoantipyrine \rightarrow quinoneimine + $4H_2O$

Kit size:	100 assays of each
Method:	Spectrophotometric at 510 nm
Total assay time:	~ 60 min
Detection limit:	100 mg/L
Application examples:	Flours, beverages, dairy products, milk, foodstuffs
	containing milk, cosmetics, pharmaceuticals and other
	materials (e.g. biological cultures, samples, etc.)
Method recognition:	Used and accepted in food analysis

Cat. No. K-LACGAR

ges

- id reaction nclusion of e mutarotase d technology PCT/ 0170)
- npetitive price (cost
- ents stable for > 2er preparation
- *lc*[™] software vailable from our for hassle-free raw cessing
- included

Cat. No. K-LACSU

- Very competitive price (cost per test)
- All reagents stable for > 12 months after preparation
- Simple format
- Very specific
- Rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standards included

Lactulose		Cat. No. K-LACTUL
UV-method for the determic containing dairy products	nation of Lactulose in milk and foodstuffs	Advantages
Principle: (β -galactosidas (I) Lactulose + $H_2O \rightarrow D$ - (glucose oxidase +	galactose + D-fructose	 Twice the sensitivity of traditional hexokinase based lactulose methods Very cost effective
(2) D-Glucose + $H_2O + O_2$	\rightarrow D-gluconic acid + H ₂ O ₂	• All reagents stable for > 2
(hexokinas (3) D-Fructose + ATP →		 years after preparation Mega-Calc[™] software
(phosphoglucose isomerase) (4) F-6-P ↔ G-6-	P	tool is available from our website for hassle-free raw
(glucose-6-phosphate dehydrogenase) (5) G-6-P + NADP⁺ → gluconate-6-phosphate + NADPH + H⁺		data processing Standard included
(gluconate-6-phosphate dehydrogenase) (6) Gluconate-6-phosphate + NADP ⁺ → ribulose-5-phosphate + NADPH + CO ₂ + H ⁺		
Kit size:	50 assays	
Method:	Spectrophotometric at 340 nm	
Total assay time: Detection limit:	~ 120 min	
Application examples:	4.8 mg/L Milk, dairy products and foods containing milk	
Method recognition:	Novel method	

D-Malic Acid

UV-method for the determination of D-Malic Acid in foodstuffs, beverages and
other materials

Principle:

(D-malate d	ehydrogenase)	
(I) D-Malic acid + NAD ⁺	\rightarrow pyruvate + CO ₂ + NADH + H ⁺	
		•
Kit size:	100 assays (manual) / 1000 (microplate) / 1100 (auto-	
	analyser)	
Method:	Spectrophotometric at 340 nm	
Reaction time:	~ 6 min	
Detection limit:	0.26 mg/L	•
Application examples:	Wine, beer, fruit juices, soft drinks, dietetic foods,	
	candies, fruit and vegetables, cosmetics, pharmaceuticals	•
	and other materials (e.g. biological cultures, samples, etc.)	
Method recognition:	Methods based on this principle have been accepted by	
-	EEC, EN, DIN, OIV, IFU, and AIJN	
	•	

Cat. No. K-DMAL

- No wasted D-malate dehydrogenase solution (stable suspension supplied)
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Rapid reaction (even with difficult samples)
- Mega-Calc™ software tool is available from our website for hassle-free raw data processing
- Standard included
- Extended cofactors stability
- Suitable for manual, microplate and autoanalyser formats

L-Malic Acid

Manual format UV-method for the determination of L-Malic Acid in foodstuffs, beverages and other materials

Principle:

(ate dehydrogenase) IAD⁺ ↔ oxaloacetate + NADH + H⁺
(0	amate-oxaloacetate transaminase) L-glutamate → L-aspartate + 2-oxoglutarate
Kit size:	(K-LMALR) 58 assays (manual) / 580 (microplate) (K-LMALL) 116 assays (manual) / 1160 (microplate

	(K-LMALL) 116 assays (manual) / 1160 (microplate)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 3 min
Detection limit:	0.25 mg/L
Application examples:	Wine, beer, fruit juices, soft drinks, candies, fruit and
	vegetables, bread, cosmetics, pharmaceuticals and other
	materials (e.g. biological cultures, samples, etc.)
Method recognition:	Methods based on this principle have been accepted by
	AOAC, EEC, EN, NF, NEN, DIN, GOST, OIV, IFU, AIJN,
	MEBAK

L-Malic Acid (Analyser format)

Analyser format UV-method for the determination of L-Malic Acid in foodstuffs, beverages and other materials

Principle:

```
(L-malate dehydrogenase)
(I) L-Malic acid + NAD<sup>+</sup> ↔ oxaloacetate + NADH + H<sup>+</sup>
```

(glutamate-oxaloacetate transaminase) (2) Oxaloacetate + L-glutamate → L-aspartate + 2-oxoglutarate

Kit size:	245.5 mL of prepared reagent (RI + R2)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 3 min
Detection limit:	20 mg/L (recommended assay)
Application examples:	Wine, beer, fruit juices, soft drinks, candies, fruit and
Method recognition:	vegetables, bread, cosmetics, pharmaceuticals and other materials (e.g. biological cultures, samples, etc.) Methods based on this principle have been accepted by AOAC, EEC, EN, NF, NEN, DIN, GOST, OIV, IFU, AIJN, MEBAK

Cat. No. K-LMAL

Advantages

or

- PVP incorporated to prevent tannin inhibition
- Both enzymes supplied as stable suspensions
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Very rapid reaction (~ 3 min)
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Extended cofactors stability
- Suitable for manual and microplate formats

Cat. No. K-LMALAF

- PVP incorporated to prevent tannin inhibition
- Very stable reagent when prepared for auto-analyser applications
- Linear calibration (R² ~ 0.9994) up to 80 µg/mL of L-malic acid in final reaction solution
- Validated by the University of Wine, Suze la Rousse, France
- Very competitive price (cost per mL of reagent)
- Both enzymes supplied as stable suspensions
- Very rapid reaction (~ 3 min)

L-Malic Acid Liquid Ready Reagents

UV-method suitable for microplate and auto-analyser formats for the determination of L-Malic Acid in foodstuffs, beverages and other materials

Principle:

(L-malate dehydrogenase) (I) L-Malic acid + NAD⁺ ↔ oxaloacetate + NADH + H⁺

(glutamate-oxaloacetate transaminase) (2) Oxaloacetate + L-glutamate → L-aspartate + 2-oxoglutarate

Kit size:	1100 assays (microplate) / 1100 (auto-analyser)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 3 min
Detection limit:	<pre>166 mg/L (recommended format)</pre>
Application examples:	Wine, beer, fruit juices, soft drinks, candies, fruit and
Method recognition:	vegetables, bread, cosmetics, pharmaceuticals and other materials (e.g. biological cultures, samples, etc.) Methods based on this principle have been accepted by AOAC, EEC, EN, NF, NEN, DIN, GOST, OIV, IFU, AIJN, MEBAK

Cat. No. K-LMALQR

egazvme

Advantages

- PVP incorporated to prevent tannin inhibition
- "Ready to use" liquid stable formulation
- Very competitive price (cost per test)
- All reagents stable for > 18 months
- Very rapid reaction (~ 3 min)
- Standard included
- Suitable for microplate and auto-analyser formats

L-Malic Acid (MegaQuant[™] format)

Simple colourimetric method for the determination of L-Malic Acid in foodstuffs, beverages and other materials

Principle:

(L-malate dehydrogenase) (I) L-Malic acid + NAD⁺ ↔ oxaloacetate + NADH + H⁺

(glutamate-oxaloacetate transaminase) (2) Oxaloacetate + L-glutamate → L-aspartate + 2-oxoglutarate

(diaphorase)

(3) INT + NADH + $H^+ \rightarrow NAD^+ + INT$ -formazan

Kit size:	60 assays
Method:	Spectrophotometric at 505 nm
Reaction time:	~ 6 min
Detection limit:	0.25 mg/L
Application examples:	Wine, beer, fruit juices, soft drinks, candies, fruit and vegetables, bread, cosmetics, pharmaceuticals and other
Method recognition:	materials (e.g. biological cultures, samples, etc.) Novel method

Cat. No. K-LMALMQ

- Novel product, patented technology
- Highly stable reagents (at least three seasons use)
- Very competitive price (cost per test)
- Spectrophotometer / laboratory / expertise not required
- Very simple procedure
- Rapid reaction time (~ 6 min)
- Standard included

Malt Amylase

Colourimetric method for the determination of α -Amylase and β -Amylase in cereal grains, malt, food, beverages and fermentation products Principle:

(1) α -Amylase is measured using the "Ceralpha" Method as used in K-CERA

(2) $\beta\text{-Amylase}$ is measured using the "Betamyl-3" Method as used in K-BETA3

Kit size:	50 assays of each
Method:	Spectrophotometric at 400 nm
Total assay time:	~ 20 min (Ceralpha Method)
	~ 10 min (Betamyl-3 Method)
Detection limit:	0.05 U/mL
Application examples:	Cereal flours, malts, fermentation broths and other
	materials
Method recognition	
"Ceralpha" Method:	AOAC (Method 2002.01), AACC (Method 22-02.01),
	ICC (Standard No. 303), RACI (Standard Method) and
	CCFRA (Flour Testing Working Group Method 0018)
"Betamyl-3" Method:	RACI (Standard Method)

Cat. No. K-MALTA

Advantages

- Very cost effective
- All reagents stable for
 2 years as supplied
- Only enzymatic kit available (Beta-Amylase)
- Very specific
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

Maltose / Sucrose / D-Glucose

UV-method for the determination of Maltose, Sucrose and D-Glucose in foodstuffs, beverages and other materials

Principle: (α -glucosidase) (I) Maltose + H₂O \rightarrow D-glucose (β -fructosidase) (2) Sucrose + H₂O \rightarrow D-glucose + D-fructose (hexokinase)

(3) D-Glucose + ATP \rightarrow G-6-P + ADP

(glucose-6-phosphate dehydrogenase) (4) G-6-P + NADP⁺ → gluconate-6-phosphate + NADPH + H⁺

Kit size: Method: Reaction time:	34 assays of each Spectrophotometric at 340 nm ~ 13 min
Detection limit:	I.5 mg/L
Application examples:	Beer, fruit juices, soft drinks, milk, jam, honey, dietetic foods, baby foods, bread, sugar products, bakery products, candies, desserts, confectionery, chocolate, ice-cream, fruit and vegetables, condiments, tobacco, cosmetics, pharmaceuticals, paper and other materials (e.g. biological cultures, samples, etc.)
Method recognition:	Methods based on this principle have been accepted by AOAC, EN, NEN, NF, DIN, GOST, OIV, IFU, AIJN, MEBAK

Cat. No. K-MASUG

- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standards included

D-Mannitol / L-Arabitol

$\ensuremath{\text{UV}}\xspace$ materials of D-Mannitol and L-Arabitol in foodstuffs and other materials

-	•		
Pri	Inc	Inl	A '
	iii c	יקי	C .

 (mannitol dehydrogenase)
 (I) D-Mannitol + NAD⁺ → D-fructose + NADH + H⁺ (mannitol dehydrogenase)
 (2) L-Arabitol + NAD⁺ → L-xylulose + NADH + H⁺

Kit size:	60 assays (manual) / 600 (microplate) / 580 (auto-analyser)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 6 min
Detection limit:	0.50 mg/L
Application examples:	Wine, chewing gum, dietetic foods, candies, cosmetics, pharmaceuticals and other materials (e.g. biological cultures, samples, etc.)
Method recognition:	Novel method

Cat. No. K-MANOL

Advantages

- Novel product (only enzymatic kit available)
- Very cost effective
- All reagents stable for > 2 years after preparation
- Simple format
- Rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Extended cofactors stability
- Suitable for manual, microplate and autoanalyser formats

D-Mannose / D-Fructose / D-Glucose

UV-method for the determination of D-Mannose, D-Fructose and D-Glucose in foodstuffs, yeast cell preparations and other materials

D:			
Pri	nci	ple:	

(hexokinase) (I) D-Mannose / D-fructose / D-glucose + ATP → M-6-P / F-6-P / G-6-P + ADP

(glucose-6-phosphate dehydrogenase)

(2) G-6-P + NADP⁺ \rightarrow gluconate-6-phosphate + NADPH + H⁺

(phosphom	annose isome	erase) (phospł	noglucose isomera	ise)
(3) M-6-P	\Leftrightarrow	F-6-P	\Leftrightarrow	G-6-P
Kit size:		55 assays		
Method:		Spectrophotometri	ic at 340 nm	
Reaction time:		~ 30 min		
Detection limit:		0.7 mg/L		
Application examp	les:	Foodstuffs, yeast co	ell preparations, e	nzymatic hydrolysates
		and other material	s (e.g. biological ci	ultures, samples, etc.)
Method recognitio	n:	Novel method		

Cat. No. K-MANGL

- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Only enzymatic kit available
- Simple format
- Rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standards included

Pectin Identification

UV-method for the identification of Pectin in foodstuffs, feed and fruit juice

Principle:

(pH 12.5) (I) Pectin + H₂O \rightarrow pectate + methanol

(pectate lyase)

(2) Pectate \rightarrow 4,5-unsaturated oligogalacturonates

Kit size:	500 assays
Method:	Spectrophotometric at 235 nm
Reaction time:	~ 30 min
Detection limit:	N/A
Application examples:	Food ingredients (e.g. citrus fruit and apple) and other materials
Method recognition:	JECFA

Cat. No. K-PECID

Advantages

- Very cost effective
- All reagents stable for > 2 years after preparation
- Only enzymatic kit available
- Simple format
- Standards included

Phytic Acid (Total Phosphorus)

Colourimetric method for the determination of Phytic Acid in cereal products, seed materials, animal feeds and other materials

Principle:

(phytase) (1) Phytic acid + $H_2O \rightarrow myo-Inositol (phosphate)_n + P_i$

(alkaline phosphatase) (2) myo-Inositol (phosphate) \rightarrow myo-inositol + P_i

(3) P_i + ammonium molybdate \rightarrow 12-molybdophosphoric acid

(diaphorase)

(4) 12-molybdophosphoric acid + H_2SO_4 / ascorbic acid \rightarrow molybdenum blue

Kit size:	50 assays
Method:	Spectrophotometric at 655 nm
Reaction time:	25 min enzymic; 1 h for phosphate determination
Detection limit:	~ 11.3 mg phosphorus (~ 40 mg phytic acid) /100 g material
Application examples:	Seed materials, feeds and foodstuffs
Method recognition:	Novel method

Cat. No. K-PHYT

- Very cost effective
- All reagents stable for > 2 years after preparation
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

Primary Amino Nitrogen (NOPA)

UV-method for the determination of Primary Amino Nitrogen in grape juice, must, wine and other materials

Principle:	
(I) Amino nitrogen + N-acetyl	(room temperature) •L-cysteine + <i>o</i> -phthaldialdehyde → isoindole derivative
Kit size:	100 assays (manual) / 1000 (microplate) / 1100 (auto- analyser)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 15 min
Detection limit:	2.59 mg N/L

2.59 mg N/L Grape juice, must, wine and other materials **Application examples:** New method

Cat. No. K-PANOPA

Advantages

- Simple format (absorbances read at 340 nm)
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

Pyruvic Acid

Method recognition:

UV-method for the determination of Pyruvic Acid in beer, cheese, fermentation products and other materials

Principle:

(D-lactate dehydrogenase) (I) Pyruvate + NADH + $H^+ \rightarrow D$ -lactic acid + NAD⁺

Kit size:	100 assays (manual) / 1000 (microplate) / 1000 (auto- analyser)
Method:	Spectrophotometric at 340 nm
Reaction time:	~ 3 min
Detection limit:	0.39 mg/L
Application examples:	Wine, beer, fruit juices, soft drinks, cheese, dietary supplements, pharmaceuticals and other materials (e.g. biological cultures, samples, etc.)
Method recognition:	New method

Cat. No. K-PYRUV

- Very cost effective
- All reagents stable for > 2 years after preparation
- Very rapid reaction (~ 3 min)
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

Principle

Raffinose / D-Galactose

UV-method for the determination of Raffinose (also stachyose and verbascose) and D-Galactose in legume seeds, plant materials, foodstuffs and feed

(
$$\alpha$$
-galactosidase)
(I) Raffinose + stachyose + verbascose + H₂O \rightarrow D-galactose + sucrose
(galactose mutarotase)
(2) α -D-Galactose \Leftrightarrow β -D-galactose
(β -galactose dehydrogenase)
(3) β -D-Galactose + NAD⁺ \rightarrow D-galactonic acid + NADH + H⁺
Kit size: 120 assays
Method: Spectrophotometric at 340 nm

	7	
Method:	Spectrophotometric at 340 nm	
Reaction time:	~ 40 min	
Detection limit:	5 mg/L	
Application examples:	Cereal flours, soybean flour, by-products of sucrose	
	manufacture and other materials	
Method recognition:	Used and accepted in food analysis	

Cat. No. K-RAFGA

Advantages

- · Very rapid reaction due to inclusion of galactose mutarotase (patented technology)
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

Raffinose / Sucrose / D-Glucose

Colourimetric method for the determination of Raffinose (also stachyose and verbascose), Sucrose and D-Glucose in legume seeds, plant materials, foodstuffs and feed

Principle:

(α-galactosidase) (I) Raffinose + stachyose + verbascose + $H_2O \rightarrow D$ -galactose + sucrose (invertase)

(2) Sucrose + H, $O \rightarrow D$ -glucose + D-fructose

(glucose oxidase) (3) D-Glucose + H₂O + O₂ \rightarrow D-gluconate + H₂O₂

(peroxidase)

(4) $2H_2O_2 + p$ -hydroxybenzoic acid + 4-aminoantipyrine \rightarrow quinoneimine + $4H_2O_2$

Kit size:	120 assays	
Method:	Spectrophotometric at 510 nm	
Reaction time:	~ 20 min	
Detection limit:	100 mg/L	
Application examples:	Analysis of grain legumes and other materials containing	
	raffinose, stachyose and verbascose	
Method recognition:	Used and accepted in food analysis	

Cat. No. K-RAFGL

Advantages

- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation

• Simple format

- · Rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standards included

L-Rhamnose

UV-method for the determination of L-Rhamnose in hydrolysates of plant material, polysaccharides, culture media / supernatants and other materials. Suitable for use with manual, microplate and auto-analyser formats.

Principle: (L-rhamnose dehydrogenase)		
(I) L-Rhamnose + NAD ⁺ \rightarrow	L-rhamno-1,4-lactone + NADH + H ⁺	
Kit size:	50 / 100 assays (manual) / 550 (microplate) / 550 (auto-	
	analyser)	
Method:	Spectrophotometric at 340 nm	
Total assay time:	~ 5 min at 25°C or ~ 4 min at 37°C	
Detection limit:	~ I.2 mg/L	
Application examples:	Hydrolysates of plant material and polysaccharides,	
	culture media / supernatants and other materials	
Method recognition:	Novel method	

Cat. No. K-RHAMNOSE

Megazyme

Advantages

- Very cost effective
- All reagents stable for > 2 years during use
- Only test kit available
- Simple format
- Rapid reaction (~ 5 min at 25°C or ~ 4 min at 37°C)
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

Cat. No. K-SORB

D-Sorbitol / Xylitol

-		
Colourimetric method for foodstuffs and wine	the determination of D-Sorbitol and Xylitol in	Advantages
Principle: (sorbitol dehydr (I) D-Sorbitol + NAD ⁺ ↔ (sorbitol dehydrogen (2) Xylitol + NAD ⁺ ↔ D-: (diaphorase (3) INT + NADH + H ⁺ →	D-fructose + NADH + H ⁺ ase) xylulose + NADH + H ⁺	 Each vial of sorbitol dehydrogenase is stable for > 2 months at 4°C after dissolution No wasted diaphorase solution (stable suspension supplied)
Kit size: Method: Reaction time: Detection limit: Application examples:	 58 assays (manual) / 580 (microplate) / 700 (auto-analyser) Spectrophotometric at 492 nm ~ 15 min 0.20 mg/L Diabetic foods (e.g. honey, jam and chocolate), dietetic foods, chewing gum, candies, fruit juice (e.g. apple juice), ice-cream, sweets, bakery products (e.g. desserts), marzipan, paper (and cardboard), cosmetics, pharmaceuticals and other materials (e.g. biological cultures, samples, etc.) 	 Very competitive price (cost per test) Reagents stable for > 2 years as supplied Mega-Calc[™] software tool is available from our website for hassle-free raw data processing Standard included Suitable for manual, microplate and auto-
Method recognition:	Methods based on this principle have been accepted by IFU, AIJN	microplate and auto- analyser formats

flours

Principle:

Kit size:

Method:

Total assay time:

Application examples:

Method recognition:

Detection limit:

Starch Damage

Cat. No. K-SDAM

Advantages

- Very cost effective
- All reagents stable for > 2 years as supplied
- Only enzymatic kit available
- Very specific
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standards included

Food Feed

Resistant Starch

Colourimetric method for the determination of Resistant Starch in cereal products and feeds

Colourimetric method for the determination of Starch Damage in cereal

(4) $2H_2O_2 + p$ -hydroxybenzoic acid + 4-aminoantipyrine \rightarrow quinoneimine + $4H_2O_2$

Spectrophotometric at 510 nm

Cereal flours and other materials

0.5-100% of sample weight

RACI (Standard Method)

200 assays

~ 40 min

(I) Damaged (or gelatinised) starch + $H_0 O \rightarrow$ maltodextrins

(amyloglucosidase)

(glucose oxidase) (3) D-Glucose + H,O + O, \rightarrow D-gluconate + H,O,

(2) Maltodextrins + $H_2O \rightarrow D$ -glucose

(fungal α -amylase)

(peroxidase)

AACC (Method 76-31.01), ICC (Standard No. 164), and

Principle:

(α -amylase + amyloglucosidase)

(1) Non-resistant starch + $H_2O \rightarrow D$ -glucose + maltose (trace)

(2) Aqueous ethanol wash + centrifugation to remove D-glucose + maltose

(3) Dissolution of resistant starch pellet in KOH and neutralisation

(α -amylase + amyloglucosidase) (4) Dissolved resistant starch + H₂O \rightarrow D-glucose

(glucose oxidase)

```
(5) D-Glucose + H_2O + O_2 \rightarrow D-gluconate + H_2O_2
```

(peroxidase)

(6) $2H_2O_2 + p$ -hydroxybenzoic acid + 4-aminoantipyrine \rightarrow quinoneimine + $4H_2O_2$

Kit size:	100 assays
Method:	Spectrophotometric at 510 nm
Total assay time:	~ 120 min (plus overnight incubation)
Detection limit:	2-100% of sample weight
Application examples:	Plant materials, starch samples and other materials
Method recognition:	AOAC (Method 2002.02), AACC (Method 32-40.01) and
	CODEX (Type II Method)

Cat. No. K-RSTAR

- Very cost effective
- All reagents stable for > 2 years as supplied
- Only enzymatic kit available
- Measures enzyme resistant starch
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

Total Starch (GOPOD format)

Colourimetric method for the determination of Total Starch in cereal products, feeds, foodstuffs and other materials

Principle: (α -amylase, 100°C <u>+</u> DMSO)

(I) Starch granules + $H_0 O \rightarrow$ maltodextrins

(amyloglucosidase)

(2) Maltodextrins + $H_2O \rightarrow D$ -glucose

(glucose oxidase) (3) D-Glucose + H₂O + O₂ \rightarrow D-gluconate + H₂O₂

(peroxidase)

(4) $2H_2O_2 + p$ -hydroxybenzoic acid + 4-aminoantipyrine \rightarrow quinoneimine + $4H_2O_2$

Kit size:	100 assays	
Method:	Spectrophotometric at 510 nm	
Total assay time:	~ 90 min	
Detection limit:	I-100% of sample weight	
Application examples:	Cereal flours, food products and other materials	
Method recognition:	AOAC (Method 996.11), AACC (Method 76-13.01),	
	ICC (Standard Method No. 168), and RACI	
	(Standard Method)	

egazvme

Advantages

- Very competitive price (cost per test)
- All reagents stable for > 12 months after preparation
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- · Standard included

Total Starch (Hexokinase format)

UV-method for the determination of Total Starch in grains, animal feeds, foodstuffs and other materials

Principle:

(α -amylase, 100°C \pm DMSO) (I) Starch granules + $H_0 \rightarrow M$ maltodextrins

(amyloglucosidase)

(2) Maltodextrins + $H_0 \rightarrow D$ -glucose

(hexokinase)

(3) D-Glucose + ATP \rightarrow G-6-P + ADP

(glucose-6-phosphate dehydrogenase) (4) G-6-P + NADP⁺ \rightarrow gluconate-6-phosphate + NADPH + H⁺

Kit size:	100 assays	
Method:	Spectrophotometric at 340 nm	
Total assay time:	~ 90 min	
Detection limit:	I-100% of sample weight	
Application examples:	Cereal flours, food products and other materials	
Method recognition:	AOAC (Method 996.11), AACC (Method 76-13.01),	
	ICC (Standard Method No. 168), and RACI	
	(Standard Method)	

Cat. No. K-TSHK

- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

Succinic Acid

UV-method for the determination of Succinic Acid in foodstuffs, feed, wine and other materials

Principle: per test) (succinyl-CoA synthetase) (I) Succinic acid + ATP + CoA \rightarrow ADP + succinyl-CoA + P_i years as supplied (pyruvate kinase) (2) ADP + PEP \rightarrow ATP + pyruvate (L-lactate dehydrogenase) (3) Pyruvate + NADH + $H^+ \rightarrow NAD^+$ + L-lactic acid 20 assays (manual) / 200 (microplate) / 270 (auto-analyser) Kit size: Method: Spectrophotometric at 340 nm data processing **Reaction time:** ~ 6 min • Standard included **Detection limit:** 0.26 mg/L **Application examples:** Wine, fruit and vegetables, soy sauce, cheese, egg, egg products and other materials (e.g. biological cultures, samples, etc.) Method recognition: Methods based on this principle have been accepted by analyser formats EEC

Sucrose / D-Fructose / D-Glucose

UV-method for the determ foodstuffs, beverages and c	nination of Sucrose, D-Fructose and D-Glucose in other materials	Advantages
Principle: (β -fructosidase (I) Sucrose + H ₂ O \rightarrow D-g (hexokina (2) D-Glucose + ATP \rightarrow (hexokina (3) D-Fructose + ATP \rightarrow (glucose-6-phosphate of (4) G-6-P + NADP ⁺ \rightarrow glucose isomerase (5) F-6-P \leftrightarrow G-6-P	glucose + D-fructose se) G-6-P + ADP se) F-6-P + ADP dehydrogenase) uconate-6-phosphate + NADPH + H ⁺	 Very competitive price (cost per test) All reagents stable for > 2 years after preparation Rapid reaction Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
Kit size: Method: Reaction time: Detection limit: Application examples: Method recognition:	50 assays of each Spectrophotometric at 340 nm ~ 30 min 1.38 mg/L Beer, fruit juices, soft drinks, milk, jam, honey, dietetic foods, bread, bakery products, dairy products, candies, desserts, confectionery, sweets, ice-cream, fruit and vegetables (e.g. potato), meat products (e.g. sausage), condiments (e.g. ketchup and mustard), feed, tobacco, cosmetics, pharmaceuticals, paper and other materials Methods based on this principle have been accepted by NF, EN, NEN, DIN, GOST, IFU, AIJN, MEBAK, IOCCC	 Stabilised D-glucose / D-fructose standard solution included Extended cofactors stability

Cat. No. K-SUCC

Advantages

- Very competitive price (cost
- All reagents stable for > 2
- Very rapid reaction (even at room temperature)
- Mega-Calc[™] software tool is available from our website for hassle-free raw
- Extended cofactors stability

Cat. No. K-SUFR

• Suitable for manual, microplate and auto-

Sucrose / D-Glucose (GOPOD format)

Colourimetric method for the determination of Sucrose and D-Glucose in foodstuffs, beverages and other materials

Principle:

(glucose oxidase) (I) D-Glucose + $H_2O + O_2 \rightarrow D$ -gluconate + H_2O_2

(peroxidase)

(2) $2H_2O_2 + p$ -hydroxybenzoic acid + 4-aminoantipyrine \rightarrow quinoneimine + $4H_2O$

 $(\beta$ -fructosidase) (3) Sucrose + H₂O \rightarrow D-glucose + D-fructose

Kit size:	250 assays	
Method:	Spectophotometric at 510 nm	
Reaction time:	~ 30 min	
Detection limit:	100 mg/L	
Application examples:	xamples: Beer, fruit juices, soft drinks, coffee, milk, jam, honey,	
	dietetic foods, bread, bakery products, candies,	
	chocolate, desserts, confectionery, ice-cream, fruit	
	and vegetables, condiments, tobacco, cosmetics,	
	pharmaceuticals, paper and other materials (e.g. biological	
	cultures, samples, etc.)	
Method recognition:	Used and accepted in food analysis	

Cat. No. K-SUCGL

egazyme

Advantages

- Very competitive price (cost per test)
- All reagents stable for > 12 months after preparation
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standards included

Detection limit:

Application examples:

Method recognition:

Total Sulphite		Cat. No. K-TSULPH
Colourimetric methods juice, foodstuffs and oth	for the determination of Total Sulphite in wine, fruit her materials	Advantages
Principle: The Total Sulphite assay i and Ellman's reagent	is based on the reaction principle between thiol groups	 "Ready to use" liquid stable formulation Very competitive price (cost per test)
Kit size: Method: Total assay time:	80 assays (manual) / 800 (microplate) / 800 (auto- analyser) Spectrophotometric at 405 nm ~ 6 min	 All reagents stable for > 18 months Very rapid reaction

Wine, fruit juice, sea food, food stuffs and other

Validated for red and white wines at the Bundesamt für

- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

~ 5 mg/L

materials

Weinbau, Austria.

Used widely in the wine industry

Total Sulphite (Enzymatic)

UV-method for the determination of Total Sulphite (SO_2^{2}) in beverages, foodstuffs and other materials

Principle:

(sulphite oxidase) (I) $SO_3^{2} + O_2 + H_2O \iff SO_4^{2} + H_2O_2$

(NADH - peroxidase)

(2) H_2O_2 + NADH + $H^+ \rightarrow 2 H_2O + NAD^+$

Kit size:	50 assays (manual) / 500 (microplate) / 588 (auto-analyser)	
Method:	Spectrophotometric at 340 nm	
Total assay time:	~ 30 min	
Detection limit:	0.3 mg/L	
Application examples:	Wine, beer, fruit juices, soft drinks, jam, fruit and vegetables, pharmaceuticals and other materials	
Method recognition:	Methods based on this principle have been accepted by DIN, EN, MEBAK and NMKL	

Cat. No. K-ETSULPH

Advantages

- Very cost effective
- All reagents stable for > 2 years during use
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Extended cofactors stability
- Suitable for manual, microplate and autoanalyser formats

Total and Free Sulphite

Colourimetric methods for the determination of Total and Free Sulphite in wine, fruit juice, foodstuffs and other materials

Principle:

The Total Sulphite assay is based on the reaction principle between thiol groups and Ellman's reagent

The Free Sulphite assay is based on the reaction principle of $\mathrm{SO}_{\rm 2}$, fuchsin and aldehyde binding

Kit size:	40 assays (manual) / 400 (microplate) / 400 (auto-analyser)	
Method:	Total sulphite: Spectrophotometric at 405 nm	
	Free sulphite: Spectrophotometric at 575 nm	
Total assay time:	Total sulphite: ~ 6 min	
	Free sulphite: ~ 9 min	
Detection limit:	Total sulphite: ~ 5 mg/L	
	Free sulphite: ~ 2 mg/L	
Application examples:	Wine, fruit juice, seafood, food stuffs and other materials	
Method recognition:	Validated for red and white wines at the Bundesamt für	
	Weinbau, Austria.	
	Used widely in the wine industry	

Cat. No. K-SULPH

- "Ready to use" liquid stable formulation
- Very competitive price (cost per test)
- All reagents stable for > 18 months
- · Very rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

Tartaric Acid

Colourimetric method for the determination of Tartaric Acid in wine, fruit juice and other materials

Principle:

The Tartaric acid assay is based on the reaction principles between tartaric acid and vanadate

Kit size:	200 assays (manual) / 2000 (microplate) / 2000 (auto-	
	analyser)	
Method:	Spectrophotometric at 505 nm	
Total assay time:	~ 4 min	
Detection limit:	~ 108 mg/L	
Application examples:	Wine, fruit juice and other materials	
Method recognition:	Used widely in the wine industry	

Cat. No. K-TART

Advantages

- "Ready to use" liquid stable formulation
- Very competitive price (cost per test)
- All reagents stable for > 1 year
- Very rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

Trehalose / D-Glucose

UV-method for the determination of Trehalose and D-Glucose in foodstuffs, beverages, and other materials

Principle:

(trehalase) (I) Trehalose + H,O \rightarrow D-glucose

(hexokinase)

(2) D-Glucose + ATP \rightarrow G-6-P + ADP

(glucose-6-phosphate dehydrogenase) (3) G-6-P + NADP⁺ \rightarrow gluconate-6-phosphate + NADPH + H⁺

Kit size:	100 assays (manual) / 1000 (microplate) / 1100 (auto- analyser)	
Method:	Spectrophotometric at 340 nm	• 5
Reaction time:	~ 8 min	• 5
Detection limit:	37.5 mg/L	r
Application examples:	Honey, mushrooms, bread, beer, seafood (e.g. lobster	a
	and shrimp), fruit juices, purees and fillings, nutrition	
	bars, surimi, dehydrated fruits and vegetables, fruit	
	products, white chocolate, sports drinks, dairy products,	
	egg products, soups and sauces, confectionery, chewing	
	gum, cosmetics, pharmaceuticals and other materials (e.g.	
	biological cultures, samples, etc.)	
Method recognition:	Novel method	

Cat. No. K-TREH

- Only enzymatic kit available
- Very cost effective
- All reagents stable for > 2 years after preparation
- Very rapid reaction
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- · Standard included
- Suitable for manual, microplate and autoanalyser formats

Urea / Ammonia (Rapid)

UV-method for the determination of Urea and Ammonia in foodstuffs, beverages and other materials

Principle:

(urease) (I) Urea + H, $O \rightarrow 2NH$, + CO,

(microbial glutamate dehydrogenase)

(2) 2-Oxoglutarate + NADPH + $NH_4^+ \rightarrow L$ -glutamic acid + NADP⁺ + H_2O

Kit size:	50 assays of each	
Method:	Spectrophotometric at 340 nm	
Reaction time:	~ 8 min	
Detection limit:	0.13 mg/L (urea)	
	0.07 mg/L (ammonia)	
Application examples:	Wine, grape juice, must, fruit juices, soft drinks, milk,	
	cheese, meat, processed meat, bakery products, seafood,	
	fertilizers, feed, pharmaceuticals, cosmetics, water (e.g.	
	swimming-pool water), Kjeldahl analysis, paper (and	
	cardboard) and other materials (e.g. biological cultures,	
	samples, etc.)	
Method recognition:	Methods based on this principle have been accepted by	
	NEN, MEBAK	

Xylanase (Azo-Wax format)

Colourimetric method for the determination of Xylanase in feed, foodstuffs and other materials

Principle:

	(β -xylanase)
(I) Azo-WAX + H_2O	\rightarrow
(insoluble in aqueous a	lcohol)

Azo-WAX fragments (soluble in aqueous alcohol)

Kit size:	200 assays	
Method:	Based on use of Azo-WAX reagent (590 nm)	
Total assay time:	~ 45 min	
Detection limit:	0.2 U/mL of assay solution	
Application examples:	Animal feeds, enzyme preparations, bread improver	
	mixtures and other materials	
Method recognition:	Used widely in the feed industry	

Cat. No. K-AZOWAX

Advantages

- Very cost effective
- All reagents stable for > 2 years
- Only test kit available
- Simple format
- Standard included

Cat. No. K-URAMR

- Very rapid reaction due to use of uninhibited glutamate dehydrogenase
- Enzymes supplied as stable suspensions
- Very competitive price (cost per test)
- All reagents stable for > 2 years after preparation
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Extended cofactors stability

Xylanase (Xylazyme AX format)

Colourimetric method for the determination of Xylanase in feed, foodstuffs and other materials

P rin	cip	le:
	~ P	· • ·

(β-xylanase)		
(I)	Xylazyme AX (water insoluble) + $H_2O \rightarrow$ water soluble dyed xylan fragments	

Kit size:	200 assays	
Method:	Based on use of Xylazyme AX tablets (590 nm)	
Total assay time:	~ 45 min	
Detection limit:	0.02 U/mL of assay solution	
Application examples:	Animal feeds, enzyme preparations, bread improver	
	mixtures and other materials	
Method recognition:	Used widely in the feed industry	

Cat. No. K-XYLS

Advantages

- Very cost effective
- All reagents stable for > 2 years during use
- Only test kit available
- Simple format
- Standards included

D-Xylose

UV-method for the determination of D-Xylose in fermentation broths and hydrolysates of plant material and polysaccharides

Principle:

(xylose mutarotase) (I) α-D-Xylose ↔ β-D-xylose

(β -xylose dehydrogenase) (2) β -D-Xylose + NAD⁺ \rightarrow D-xylonic acid + NADH + H⁺

Kit size:	100 assays (manual) / 1000 (microplate) / 1300 (auto- analyser)	
Method:	Spectrophotometric at 340 nm	
Reaction time:	~ 6 min	
Detection limit:	0.7 mg/L	
Application examples:	Analysis of D-xylose in fermentation broths and	
	hydrolysates of plant material and polysaccharides	
Method recognition:	Novel method	

Cat. No. K-XYLOSE

- Very cost effective
- Reagents stable for > 2 years after preparation
- Only enzymatic kit available
- Rapid reaction (~ 6 min)
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included
- Suitable for manual, microplate and autoanalyser formats

Cat. No. K-LDPU

Available soon...

Colourimetric method for the determination of Limit-Dextrinase or Pullulanase in grain extracts, feed and fermentation products

Kit size: Method:

Total assay time: Detection limit: Application examples: Method recognition: 100 / 200 assays Spectrophotometric at 400 nm (BzCNPG3G3) Fluorimetric at 450nm (BzMUG3G3) ~ 10 min 0.05 u/mL Cereal flours, fermentation broths, and other materials **Novel method**

- Suitable for manual and auto-analyser formats
- Very cost effective
- All reagents stable for > 2 years after preparation
- Very specific
- Simple format
- Mega-Calc[™] software tool is available from our website for hassle-free raw data processing
- Standard included

ENZYMES ...

Megazyme stocks a wide range of ultra-pure enzymes for use in analytical, diagnostic and research applications. These enzymes are either produced recombinantly through various expression systems or are purified using conventional protein purification techniques from crude industrial enzyme formulations.

Assay Kits

Diversity

Megazyme's enzyme portfolio is constantly expanding and we are always keen to receive enzyme suggestions from customers. The bulk of Megazyme's enzymes are carbohydrate acting enzymes (CAZymes) and cover 36 CAZy families - 31 glycoside hydrolase (GH) families, three polysaccharide lyase (PL) families and two carbohydrate esterase (CE) families. A wide range of analytical enzymes including kinases and isomerases are also available.

Purity

Megazyme prides itself on the purity of our enzymes and reagents. As an example we supply the enzymes required for the analysis of dietary fiber by the official AOAC methods, namely α -amylase, amyloglucosidase and protease. The quality of these enzymes is of paramount importance for use in this assay and Megazyme proudly provides the highest purity level commercially available globally.

Stability

Megazyme enzymes are provided in various formats including freeze-dried powder, ammonium sulphate suspension and 50% glycerol solution. All enzymes have undergone rigorous stability studies and recommended storage conditions are provided with every product.

Background Information

Every enzyme is extensively characterised by our R&D scientists. A data sheet is shipped with each enzyme describing specific activity on a suitable substrate and relative activity on any other relevant substrates. The data sheet also describes pH and temperature activity optima along with pH and temperature stability data. These data sheets are also available on every product page at www.megazyme.com.

Cat. No.	Product	Cat. No.	Product
	ENZYMES	E-AMGDFPD	Amyloglucosidase (powder) (A. niger) ^{NEW}
E-ACSBS	RecAcetyl-CoA synthetase (B. subtilis)	E-AMGFR	Amyloglucosidase (A. niger)
E-OGLYEF	Recendo- α –N-Acetylgalactosaminidase (E. faecalis)	E-AMGPU	Amyloglucosidase (Rhizopus sp.)
E-ANAGM	^{Rec} α–N-Acetylgalactosaminidase (microbial)	E-EARAB	endo-1,5-α-L-Arabinanase (A. niger)
E-BNAHEX	Recβ-N-Acetylhexosaminidase (microbial)	E-AFASE	α -L-Arabinofuranosidase (A. <i>niger</i>)
E-AXEAO	RecAcetylxylan esterase (Orpinomyces sp.)	E-AFAM2	${}^{\text{\tiny Rec}} \alpha$ -L-Arabinofuranosidase (novel specificity)
E-ACPEC	RecPhosphatase (acid) (E. coli)	E-ABFCJ	^{Rec} α-L-Arabinofuranosidase (C. japonicus)
E-AMPK	RecAdenylate kinase (myokinase) (prokaryote)	E-ABFCT	$^{Rec}\alpha$ -L-Arabinofuranosidase (C. thermocellum)
E-ADHEC	RecAlcohol dehydrogenase (E. coli)	E-ABFUM	^{Rec} α -L-Arabinofuranosidase (<i>U. maydis</i>) ^{NEW}
E-ALGLS	RecAlginate lyase (Sphingomonas sp.)	E-ARBACJ	Recendo-/exo-Arabinanase (C. japonicus)
E-ALPEC	RecPhosphatase (Alkaline) (E. coli)	E-ASNEC	^{Rec} Asparaginase (E. coli)
E-ANAAM	α -Amylase (A. oryzae)	E-DIPEP	^{Rec} α-Aspartyl dipeptidase (<i>E. coli</i>)
E-BAASS	α -Amylase (B. amyloliquefaciens)	E-CBHI	Cellobiohydrolase I (T. longibrachiatum)
E-BLAAM	α -Amylase (B. licheniformis)	E-CELAN	Cellulase (endo-1,4-β-D-glucanase) (A. niger)
E-BAM	α-Amylase (B. licheniformis) ^{NEW}	E-CELBA	^{Rec} Cellulase (endo-1,4- β -D-glucanase) (B. amyloliquefaciens)
E-PANAA	α -Amylase (Porcine Pancreatic)	E-CELTE	Cellulase (endo-1,4-β-D-glucanase) (T. emersonii)
E-BARBL	β-Amylase (barley; liquid)	E-CELTR	Cellulase (endo-1,4-β-D-glucanase) (T. longibrachiatum)
E-BARBP	β-Amylase (barley; powder)	E-CELTM	^{Rec} Cellulase (endo-1,4- β -D-glucanase) (T. maritima)
E-BAMBC	^{Rec} β-Amylase (B. cereus)	E-CITEC	RecCitrate synthase (E. coli)
E-AMGDF	Amyloglucosidase (A. niger) ^{NEW}	E-CREA	RecCreatinase (Bacillus sp.)

Cat. No.	Product	Cat. No.	Product
E-CMPK	^{Rec} Cytidylate kinase (prokaryote)	E-INVPD	Invertase (powder)
E-DIAEC	RecDiaphorase (E. coli)	E-ISAMY	lsoamylase (glycogen 6-glucanohydrolase)
E-FAERU	RecFeruloyl esterase (rumen microorganism)	E-ICDHBS	Reclsocitrate dehydrogenase (B. subtilis)
E-FAEZCT	RecFeruloyl esterase (C. thermocellum)	E-DLDHLM	RecD-Lactate dehydrogenase (L. mesenteroides)
E-FDHCB	RecFormate dehydrogenase (C. boidinii)	E-LLDHP	L-Lactate dehydrogenase (Porcine)
E-FRMXLQ	Fructanase mixture (purified; liquid)	E-LICHN	Lichenase (endo-1,3(4)-β-D-glucanase) (Bacillus sp.)
E-FRMXPD	Fructanase mixture (purified; powder)	E-DMDHEC	^{Rec} D-Malate dehydrogenase (<i>E. coli</i>)
E-FUCTM	^{Rec} α -Fucosidase (thermostable) (<i>T. maritima</i>) ^{NEW}	E-LMDHEC	RecL-Malate dehydrogenase (E. coli)
E-FUCM	1,2- α -L-Fucosidase (microbial)	E-BMANN	endo-1,4-β-Mannanase (A. niger)
E-EGALN	endo-1,4-β-D-Galactanase (A. niger)	E-BMABS	endo-1,4-β-Mannanase (Bacillus sp.)
E-GALCJ	^{Rec} endo-1,4-β-D-Galactanase (C. <i>japonicus</i>)	E-BMACJ	^{Rec} endo-1,4-β-Mannanase (C. japonicus)
E-GALCT	^{Rec} endo-1,4-β-D-Galactanase (C. thermocellum)	E-BMATM	^{Rec} endo-1,4- β -Mannanase (T. maritima)
E-GALDH	RecGalactose dehydrogenase (soil prokaryote)	E-BMABC	^{Rec} β-Mannanase (B. circulans) ^{NEW}
E-GALMUT	RecGalactose dehydrogenase / Galactose mutarotase	E-MNHPF	Rec Mannitol dehydrogenase (P. fluorescens)
E-AGLAN	α -Galactosidase (A. niger)	E-BMOSCF	^{Rec} β-Mannosidase (C. fimi)
E-AGLANP	α-Galactosidase (A. niger) powder	E-MAST	Malt Amylase Standard
E-AGALPS	$\operatorname{Rec}\alpha$ -Galactosidase (P. simplicissimum) ^{NEW}	E-PEROX	Peroxidase (Horse radish) ^{NEW}
E-AGLGU	α -Galactosidase (guar)	E-NADHPO	RecPeroxidase (NADH peroxidase) (E. faecalis)
E-BGLAN	β -Galactosidase (A. niger)	E-PCLYAN	Pectate lyase (Aspergillus sp.)
E-LICACT	RecNon-specific endo-1,3(4)- β -Glucanase (C. thermocellum)	E-PCLYAN2	Pectate lyase (Aspergillus sp.)
E-EXBGOS	exo-1,3- β -D-Glucanase / β -Glucosidase	E-PLYCJ	RecPectate lyase (C. japonicus)
E-LAMSE E-LAMHV	endo-1,3- β -D-Glucanase (Trichoderma sp.)	E-PGDHEC E-PGIBS	Rec6-Phosphogluconate dehydrogenase (E. coli)
E-EXG5AO	Recendo-1,3-β-D-Glucanase (barley) Recexo-1,3-β-D-Glucanase (Aspergillus oryzae)	E-PGIEC	RecPhosphoglucose isomerase (B. subtilis) RecPhosphoglucose isomerase (E. coli)
E-EXBGL	exo-1,3- β -D-Glucanase (<i>Trichoderma sp.</i>)	E-PGISC	RecPhosphoglucose isomerase (S. cerevisiae)
E-EXBGL	^{Rec} exo-1,3-β-D-Glucanase (<i>T. virens</i>)	E-PGM	Rec Mutase (α -Phosphoglucomutase) (microbial)
E-GAMP	RecGlucoamylase P (H. resinae)	E-PMIEC	RecPhosphomannose isomerase (E. coli)
E-GLUKEC	RecGluconokinase (E. coli)	E-PTABS	RecPhosphotransacetylase (B. subtilis)
E-GOX	Glucose oxidase (Aspergillus sp.) ^{NEW}	E-PGALUSP	endo-Polygalacturonanase M2 (A. aculeatus)
E-GOXCA	Glucose oxidase / Catalase mixture (eukaryote)	E-BSPRPD	Protease (subtilisin A) (B. licheniformis)
E-GPDH5	Glucose-6-phosphate dehydrogenase (L. mesenteroides)	E-BSPRT	Protease (subtilisin A) (B. licheniformis)
E-GPDHEC	RecGlucose-6-phosphate dehydrogenase (E. coli)	E-PULKP	Pullulanase MI (K. planticola)
E-TSAGL	α -Glucosidase (B. stearothermophilus)	E-PULBL	Pullulanase M2 (B. licheniformis)
E-TSAGS	$^{Rec}\alpha$ -Glucosidase (B. stearothermophilus)	E-ISPUAN	Isopullulanase (A. niger) ^{NEW}
E-AGLUTM	^{Rec} α -Glucosidase (thermostable) (T. maritima) ^{NEW}	E-RHAMS	^{Rec} α-Rhamnosidase (prokaryote)
E-MALTS	α -Glucosidase (maltase) (yeast)	E-SIALCP	Recexo- α -Sialidase (C. perfringens)
E-TRNGL	α -Glucosidase (transglucosidase) (A. niger)	E-SIALST	Recexo- α -Sialidase (S. typhimurium)
E-OAGUM	Oligo-a-1,6-Glucosidase	E-SCOAS	^{Rec} Succinyl-CoA synthetase (prokaryote)
E-MALBS	Oligo- α -1,4(6)-Glucosidase (B. subtilis) ^{NEW}	E-SUCR	Sucrase (maltase) (yeast)
E-BGLUC	β -Glucosidase (A. niger)	E-SUCRBG	Sucrase plus β-Galactosidase
E-BGOSAG	^{Rec} β-Glucosidase (Agrobacterium sp.)	E-TMPK	^{Rec} Thymidylate kinase (prokaryote)
E-BGOSPC	Recβ-Glucosidase (thermostable) (P. chrysosporium)	E-TREH	RecTrehalase (prokaryote)
E-BGOSTM	Rec β -Glucosidase (thermostable) (<i>T. maritima</i>)	E-UAO	RecUricase (eukaryote)
E-BGLAEC	Recβ-Glucuronidase (E. coli)	E-XANLB	RecXanthan lyase (Bacillus sp.)
E-AGUBS	$Rec \alpha$ -Glucuronidase (G. stearothermophilus)	E-XYTRI	endo-1,4-β-Xylanase MI (T. viride)
E-GOTEC E-GPTBS	RecGlutamate oxaloacetate transaminase (E. coli) RecGlutamate pyruvate transaminase (B. subtilis)	E-XYTR3 E-XYAN4	endo-1,4-β-Xylanase M3 (T. longibrachiatum; pl 9.0) endo-1,4-β-Xylanase M4 (A. niger)
E-GLUTEC	RecGlutaminase (E. coli)	E-XYRU6	endo-1,4-β-Xylanase M6 (rumen microorganism)
E-GPO	RecGlycerol 3-phosphate oxidase	E-XYNAP	Recendo-1,4- β -Xylanase (A. punctata)
E-GMPK	RecGuanylate kinase (prokaryote)	E-XYNBS	Recendo-1, 4- β -Xylanase (B. stearothermophilus T6)
E-HEX10	Hexokinase (yeast)	E-XYNACJ	Recendo-1,4- β -Xylanase (C. japonicus)
E-HKGDH	Hexokinase / Glucose-6-phosphate dehydrogenase	E-XYNBCM	Recendo-1,4- β -Xylanase (C. mixtus)
E-HYLSP	RecHyaluronate lyase (novel specificity) (soil	E-XYLNP	Recendo-1,4- β -Xylanase (N. patriciarum)
	prokaryote)	E-XGP74	Recendo-1,4- β -Glucanase (Paenibacillus sp.)
E-HBDH	Rec3-Hydroxybutyrate dehydrogenase (prokaryote)	E-XYLATM	Recendo-1,4- β -Xylanase (T. maritima)
E-INDHBS	Recmyo-Inositol dehydrogenase (B. subtilis)	E-XEGP	RecXyloglucanase (Paenibacillus sp.)
E-ENDOIAN	Recendo-Inulinase (A. niger)	E-BXSEBP	Recexo-1,4-β-Xylosidase (B. pumilus)
E-EXOIAN	Recexo-Inulinase (A. niger)	E-BXSR	^{Rec} exo-1,4-β-Xylosidase (S. <i>ruminantium</i> ; regular)
E-INVRT	Invertase (fructofuranosidase) (yeast)	Rec (recombinant	t enzyme)

ENZYME SUBSTRATES...

ENZYME SUBSTRATES

CHROMOGENIC SUBSTRATES

Chromogenic, or dye-labelled polysaccharides are useful for the specific measurement of polysaccharide *endo*-hydrolases in crude plant extracts or industrial enzyme preparations. Traditionally, such enzymes have been measured using the native polysaccharide, followed by quantification of the increase in reducing sugar or decrease in viscosity on hydrolysis. Since a range of enzymes, including *endo*- and *exo*-polysaccharidases and glycosidases, act on any given polysaccharide, reducing-sugar methods are not specific. Viscosity reduction methods are specific for *endo*-hydrolase activity, but are tedious to perform, and require specialist equipment. Chromogenic polysaccharide substrates offer the advantages of being specific and sensitive, and can form the basis of accurate, reliable and robust assay procedures.

In the case of insoluble chromogenic substrates the insoluble substrate (gelatinous particles) is depolymerised and solubilised by the action of the *endo*-hydrolase. The reaction is terminated by adding an alkaline solution to stop enzyme activity and the reaction slurry is filtered or centrifuged. Colour in the filtrate or supernatant is measured in a spectrophotometer and the colour intensity is directly related to enzyme activity. Shown below is a schematic representation of the use of AZCL-amylose (Cat. No. I-AZAMY) to measure α -amylase activity in a sample.

INSOLUBLE (CROSSLINKED) CHROMOGENIC SUBSTRATES

Cat. No.	Product	For the Measurement of	Recommended Conditions
I-AZAMY	AZCL-Amylose	α -Amylase (Fungal) α -Amylase (Cereal) α -Amylase (Bacterial)	Na acetate, 100 mM, pH 4.4 Na maleate, 100 mM, pH 6.0 Bis-Tris, 100 mM, pH 7.0
I-AZDAR	AZCL-Arabinan (debranched)	endo-Arabinanase	Na acetate, 50 mM, pH 4.0
I-AZCEL	AZCL-HE-Cellulose	endo-Cellulase (Trichoderma)	Na acetate, 25 mM, pH 4.5
I-AZXYG I-ACELL I-AAVIC	AZCL-Xyloglucan (tamarind) Azo-α-Cellulose Azo-Avicel	endo-Cellulase (Aspergillus)	Na acetate, 25 mM, pH 4.5
I-AZBGL	AZCL-Barley β -Glucan	endo-Cellulase (Trichoderma) Lichenase Malt β-Glucanase	Na acetate, 25 mM, pH 4.5 Na phosphate, 25 mM, pH 6.5 Na acetate, 25 mM, pH 4.5
I-AZPAC	AZCL-Pachyman	endo-1,3-β-Glucanase	Na acetate, 50 mM, pH 6.0
I-AZCUR	AZCL-Curdlan		

Cat. No.	Product	For the Measurement of	Recommended Conditions
I-AZCHAN	AZCL-Chitosan	endo-Chitosanase	Na acetate, 50 mM, pH 5.0
I-AZDEX	AZCL-Dextran (No. B-512)	endo-1,6- α -Dextranase	Na acetate, 50 mM, pH 5.0
I-AZGLP	AZCL-Galactan (potato)	endo-1,4- β -Galactanase	Na acetate, 25 mM, pH 4.3
I-AZGMA	AZCL-Galactomannan (carob)	endo-1,4-β-Mannanase	Na acetate, 50 mM, pH 4.5
I-AZCAS	AZCL-Casein	endo-Protease	Na phosphate, 100 mM, pH 7.0
I-AZCOL	AZCL-Collagen		
I-AZPUL	AZCL-Pullulan	Microbial pullulanase	Na acetate, 100 mM, pH 5.0
		Malt limit-dextrinase	Na maleate, 100 mM, pH 5.5
I-AZRHI	AZCL-Rhamnogalacturonan I	Rhamnogalacturonanase	Na acetate, 50 mM, pH 4.5 (or 8)
I-AZXBW	AZCL-Xylan (birchwood)	endo-Xylanase	Na acetate, 25 mM, pH 4.7
I-AZXBE	AZCL-Xylan (beechwood) ^{NEW}		
I-AZWAX	AZCL-Arabinoxylan (wheat)		

SOLUBLE CHROMOGENIC SUBSTRATES

In the case of soluble chromogenic substrates, an enzyme sample is incubated with the soluble substrate. The reaction is terminated and high molecular weight, partially hydrolysed fragments are precipitated from solution with an organic solvent such as ethanol or methoxyethanol. Lower molecular weight fragments (products of enzymatic hydrolytic activity) remain in solution. The suspension is mixed thoroughly, centrifuged, and the colour in the supernatant solution is measured in a spectrophotometer. With the aid of a standard curve, the enzyme activity can be determined. Shown below is a schematic representation of the use of Red Starch (Cat. No. S-RSTAR) to measure α -amylase activity in a sample.

SOLUBLE CHROMOGENIC SUBSTRATES

Cat. No.	Product	For the Measurement of	Recommended Conditions	Precipitant Solution
S-RDAR	Red Debranched Arabinan (sugar beet)	endo-Arabinanase	Na acetate, 200 mM, pH 4.5	95% v/v Ethanol
S-RSTAR	Red Starch	α -Amylase (Fungal)	Na malate, 100 mM, pH 5.4	95% v/v Ethanol
		α -Amylase (Cereal)	Na malate, 100 mM, pH 5.4	
		α -Amylase (Bacterial)	Na maleate, 100 mM, pH 6.5	
S-ACMCL	Azo-CM-Cellulose (liquid)	endo-Cellulase	Na acetate, 100 mM, pH 4.5	80% v/v Ethanol/ Na Acetate, Zn Acetate, pH 5
S-ACMC	Azo-CM-Cellulose (powder)			
S-AZXG	Azo-Xyloglucan (tamarind)	endo-Cellulase	Na acetate, 100 mM, pH 4.5	95% v/v Ethanol
S-ABG100	Azo-Barley Glucan	<i>endo</i> -Cellulase Lichenase Malt β-Glucanase	Na acetate and Na phosphate 40 mM, pH 4.6	80% v/v Methoxyethanol/ Na Acetate, Zn Acetate, pH 5
S-AZFR5	Azo-Fructan	endo-Fructanase	Na acetate, 100 mM, pH 4.5	86% Ethanol/ KOH, 200 mM
S-AZFRXOI	Azo-Fructan plus exo-Inulinase			
S-RPUL	Red Pullulan	Microbial pullulanase	Na acetate, 200 mM, pH 5.0	95% v/v Ethanol
		Malt limit-dextrinase	Na acetate, 200 mM, pH 5.0	
S-ACGLM	Azo-Carob Galactomannan	endo-1,4-β-Mannanase	Na acetate, 200 mM, pH 4.0	95% v/v Ethanol
S-AGALP	Azo-Galactan (potato)			
S-AZCAS	Azo-Casein (Sulphanilamide Dyed)	endo-Protease	Na phosphate, 100 mM, pH 7.0	5% Trichloroacetic acid
S-AZRH	AZ-Rhamnogalacturonan	Rhamnogalacturonanase	Na acetate, 100 mM, pH 4.5	95% v/v Ethanol
S-AWAXL	Azo-Wheat Arabinoxylan (liquid)	endo-Xylanase	Na acetate, 50 mM, pH 4.5	95% v/v Ethanol
S-AWAXP	Azo-Wheat Arabinoxylan (powder)			
S-AXBL	Azo-Xylan (birchwood) (liquid)			
S-AXBP	Azo-Xylan (birchwood) (powder)			

ENZYME TABLET TESTS

Megazyme supplies a range of enzyme tablet tests for ultimate end-user convenience. These products contain the insoluble chromogenic substrates discussed above and from a procedural perspective, operate in the same way. The advantage of enzyme tablet tests is that the need to accurately weigh substrate quantities (and the error associated with this parameter) is removed.

Most enzyme tablet test products are available in packsizes of 200 and 1000 tablets. They are listed below, separated in terms of the enzyme activities that can be assayed along with the suggested buffer conditions for each test.

Cat. No.	Product	For the Measurement of	Recommended Conditions
T-AMZ	Amylazyme	α -Amylase (Fungal)	Na acetate, 100 mM, pH 4.4
T-AMZBG	Amylazyme BG	α -Amylase (Cereal)	Na maleate, 100 mM, pH 6.0
T-AMZRD	Amylazyme Red	α -Amylase (Bacterial)	Bis-Tris, 100 mM, pH 7.0
T-AMZHY	Amylazyme HY ^{NEW}		
T-ARZ	Arabinazyme	Arabinase	Na acetate, 50 mM, pH 4.0
T-CAF	Cellazyme AF ^{NEW}		
T-CCZ	Cellazyme C	endo-Cellulase	Na acetate, 25 mM, pH 4.5
T-CTZ	Cellazyme T		
		endo-Cellulase	Na acetate, 25 mM, pH 4.5
T-BGZ	Beta-Glucazyme	Lichenase	Na phosphate, 25 mM, pH 6.5
		Malt B-Glucanase	Na acetate, 25 mM, pH 4.5
T-PAZ	I,3-Beta-Glucazyme	endo-1,3-B-Glucanase	Na acetate, 50 mM, pH 6.0
T-CUR	I,3-Beta-Glucazyme HS ^{NEW}		
T-CHZ	Chitozyme	Chitosanase	Na acetate, 50 mM, pH 5.0
T-DEXT	Alpha-Dextrazyme	endo-1,6- α -Dextranase	Na acetate, 50 mM, pH 5.0
T-LDZ	Limit-Dextrizyme	Microbial pullulanase	Na acetate, 100 mM, pH 5.0
		Malt limit-dextrinase	Na maleate, 100 mM, pH 5.5
T-GLZ	Galactazyme	endo-1,4-B-Galactanase	Na acetate, 25 mM, pH 4.3
T-MNZ	Mannazyme	endo-1,4-B-Mannanase	Na acetate, 50 mM, pH 4.5
T-PRAK	Protazyme AK	endo-Protease	Na phosphate, 100 mM, pH 7.0
T-PROL	Protazyme OL		
T-RHAM	Rhamnozyme	Rhamnogalacturonanase	Na acetate, 50 mM, pH 4.5 (or 8)
T-XYZ	Xylazyme	endo-Xylanase	Na acetate, 25 mM, pH 4.7
T-XAF	Xylazyme AF ^{NEW}		
T-XAX	Xylazyme AX		

COLOURIMETRIC OLIGOSACCHARIDES

The colourimetric substrates supplied by Megazyme are based on defined oligosaccharides which are covalently linked to a colourimetric or fluorimetric moiety through the reducing D-glucosyl residue of the oligosaccharide. In the measurement of α -amylase using Ceralpha reagent, the substrate is composed of end-blocked 4-nitrophenyl- α -maltoheptaoside in the presence of an excess quantity of thermostable α -glucosidase. When the substrate is cleaved by α -amylase, the α -glucosidase removes the remaining D-glucosyl residues releasing free 4-nitrophenol, which in the presence of an alkaline solution is converted to the yellow phenolate ion. The principle is depicted below.

Colourimetric oligosaccharides that do not contain a blocking group (e.g. 2-chloro-4-nitrophenol-cello-oligosaccharides) cannot be used to measure *endo*-acting hydrolytic in the presence of *exo*-acting enzymes but can be employed for the assay of pure enzymes. These substrates also find use in enzyme research employing HPLC analysis where their chromogenic moiety allows for quantification by UV detection.

Cat. No.	Product
2-Chloro-	4-Nitrophenyl-Cello-Oligosaccharides
O-CPNPG2 O-CPNPG3 O-CPNPG4 O-CPNPG5	DP2 2-Chloro-4-nitrophenyl-β-cellobioside ^{NEW} DP3 2-Chloro-4-nitrophenyl-β-cellotrioside ^{NEW} DP4 2-Chloro-4-nitrophenyl-β-cellotetraoside ^{NEW} DP5 2-Chloro-4-nitrophenyl-β-cellopentaoside ^{NEW}
4-Methylu	mbelliferyl-β-Cello-Oligosaccharides
O-4MUG2 O-4MUG3 O-4MUG4 O-4MUG5	DP2 4-Methylumbelliferyl-β-cellobioside ^{NEW} DP3 4-Methylumbelliferyl-β-cellotrioside ^{NEW} DP4 4-Methylumbelliferyl-β-cellotetraoside ^{NEW} DP5 4-Methylumbelliferyl-β-cellopentaoside ^{NEW}
O-B4MUG3	Blocked 4-methylumbelliferyl-β-cellotrioside ^{NEW}
O-BNAPG3	Blocked β-naphthyl-β-cellotrioside ^{NEW}

Cat. No.

O-4MUX2

O-4MUX3

DP2

DP3

4-Nitrophenyl-β-Xylo-Oligosaccharides

O-PNPX2	DP2	4-Nitrophenyl-β-xylobioside ^{NEW}
O-PNPX3	DP3	4-Nitrophenyl-β-xylotrioside ^{NEW}

4-Methylumbelliferyl-β-Xylo-Oligosaccharides

O-ONPX2 $\textbf{2-Nitrophenyl-}\beta\textbf{-xylobioside}^{\texttt{NEW}}$ DP2

2-Chloro-4-Nitrophenyl- α -Manno Oligosaccharides

O-CPNPAM2	DP2	2-Chloro-4-nitrophenyl-α-mannobioside ^{NEW}
O-CPNPAM3	DP3	2-Chloro-4-nitrophenyl- α -mannotrioside ^{NEW}
O-CPNPAM4	DP4	$\label{eq:linear} \text{2-Chloro-4-nitrophenyl-} \alpha\text{-mannotetraoside}^{\texttt{NEW}}$

4-Methylumbelliferyl-α-Manno-Oligosaccharides

O-4MUAM2	DP2	4-Methylumbelliferyl- α -mannobioside ^{NEW}
O-4MUAM3	DP3	4-Methylumbelliferyl- α -mannotrioside ^{NEW}
O-4MUAM4	DP4	4-Methylumbelliferyl- α -mannotetraoside ^{NEW}

Nitrophenyl-Malto-Oligosaccharides

O-BPNPC7	Blocked 4-nitrophenyl- α -maltoheptaoside
0.01000	
O-PNPC3	4-Nitrophenyl- β-maltotrioside ^{NEW}
O-NAPC3	β -Naphthyl- β -maltotrioside ^{NEW}

O-PNPL 4-Nitrophenyl β -lactoside^{NEW}

Ind

6

6

6

CARBOHYDRATES..

Assay Kits

Enzyme

CARBOHYDRATES

Megazyme provides high purity oligosaccharides and polysaccharides for research purposes. Although in many cases the measurement of enzymatic activity is greatly simplified through the use of chromogenic / colourimetric substrates, activity on the native substrates can also be investigated. Megazyme's oligosaccharides and polysaccharides are also used all over the world for investigations into the mechanism of action of enzymes. The common oligosaccharide families (cello-, xylo-, manno- etc.) are generally available in DP2-6 and are accompanied by a data sheet describing purity by HPLC/TLC as appropriate. The most common polysaccharides are available in a range of viscosity grades that vary in average molecular weight, degree of branching on the polysaccharide backbone, or both. Accompanying data sheets outline relevant physicochemical data.

OLIGOSACCHARIDES

Aldouronic Acids (from xylan)

O-AMX	Aldouronic acid mixture
O-AMXR	Aldouronic acid mixture (borohydride reduced)

Amylosaccharides (mixed-linkage)

Isopanose^{NEW}

O-GMT

6³-α-D-Glucosyl-maltotriose

		011
O-ABI	DP2	Arabinobiose (syrup)
O-ATR	DP3	Arabinotriose (syrup)
O-ATE	DP4	Arabinotetraose (syrup)
O-APE	DP5	Arabinopentaose (syrup)
O-AHE	DP6	Arabinohexaose (powder)
O-AHP	DP7	Arabinoheptaose (powder)
O-AOC	DP8	Arabino-octaose (powder)

Cello-Oligosaccharides

	HO HO OH	HO COH HO C	он
O-CTR	DP3	Cellotriose	
OCTE		Colletetres	

 O-CTE
 DP4

 O-CPE
 DP5

 O-CHE
 DP6

Cellotriose Cellotetraose Cellopentaose Cellohexaose

Borohydride Reduced Cello-Oligosaccharides

HQ-	он он	HO HO HO HO HO HO HO HO HO HO HO HO HO H
O-CTRRD	DP3	I,4-β-D-Cellotriitol ^{NEW}
O-CTERD	DP4	I,4-β-D-Cellotetraitol ^{NEW}
O-CPERD	DP5	I,4-β-D-Cellopentaitol ^{NEW}
O-CHERD	DP6	I,4-β-D-Cellohexaitol ^{NEW}

	Cat. No.	Product
--	----------	---------

I,3-β-D-Gluco-Oligosaccharides

O-LAM2	DP2	Laminaribiose
O-LAM3	DP3	Laminaritriose
O-LAM4	DP4	Laminaritetraose
O-LAM5	DP5	Laminaripentaose
O-LAM6	DP6	Laminarihexaose

I,4-β-D-Manno-Oligosaccharides

O-MBI	DP2	Mannobiose
O-MTR	DP3	Mannotriose
O-MTE	DP4	Mannotetraose
O-MPE	DP5	Mannopentaose
O-MHE	DP6	Mannohexaose

Xyloglucan Derived Oligosaccharides

Isoprimeverose (xyloglucan derived)

O-XCBIR

Xylosyl-cellobiose (NaBH₄ reduced)

Xyloglucan heptasaccharide (X,Glc,)

O-XBIRD DP2 Xylobiose (borohydride reduced)^{NEW} O-XTRRD DP3 Xylotriose (borohydride reduced)NEW

Arabino-Xylo-Oligosaccharides

O-A2X3 2³-,3³-di- α -L-Arabinofuranosyl-xylotriose^{NEW}

O-AX3MIX $2^{3}-\alpha$ -L-Arabinofuranosyl-xylotriose^{NEW} plus 3³-α-L-Arabinofuranosyl-xylotriose

POLYSACCHARIDES

Cat. No.	Product	Cat. No.	Product
P-ARAB	Arabinan (sugar beet)	P-FOS28	Fructooligosaccharides (DP2-8) ^{NEW}
P-DBAR	Debranched Arabinan (sugar beet)	P-GALLU	Galactan (lupin)
P-LARB	Linear 1,5- α -L-Arabinan (sugar beet)	P-GALPOT	Galactan (potato)
P-CMLA	CM-Linear 1,5-α-L-Arabinan (sugar beet)	P-GALML	Galactomannan (carob; low viscosity)
P-ARGAL	Arabinogalactan (larch wood)	P-GALMH	Galactomannan (carob; high viscosity)
P-RAXY	Arabinoxylan (rye flour)	P-GGMMV	Galactomannan (guar; medium viscosity)
P-WAXYL	Arabinoxylan (wheat flour; low viscosity)	P-GGMHV	Galactomannan (guar; high viscosity)
P-WAXYM	Arabinoxylan (wheat flour; medium viscosity)	P-GGM21	Galactomannan (guar; galactose depleted; 21% gal)
P-WAXYH	Arabinoxylan (wheat flour; high viscosity)	P-GGM28	Galactomannan (guar; galactose depleted; 28% gal)
P-WAXYI	Arabinoxylan (wheat flour; insoluble)	P-GLCML	Glucomannan (konjac; low viscosity)
P-ADWAX22	Arabinoxylan (acid debranched; 22% ara) ^{NEW}	P-GLCMH	Glucomannan (konjac; high viscosity)
P-ADWAX26	Arabinoxylan (acid debranched; 26% ara) ^{NEW}	P-INUL	Inulin (DP2-60) ^{NEW}
P-EDWAX30	Arabinoxylan (enzyme debranched; 30% ara) ^{NEW}	P-LICHN	Lichenan (icelandic moss)
P-BGBL	Beta-Glucan (barley; low viscosity)	P-MANIV	Mannan (ivory nut)
P-BGBM	Beta-Glucan (barley; medium viscosity)	P-MANCB	Mannan (1,4-β-D-mannan)
P-BGBH	Beta-Glucan (barley; high viscosity)	P-PACHY	Pachyman (1,3-β-D-glucan)
P-BGOM	Beta-Glucan (oat; medium viscosity)	P-CMPAC	CM-Pachyman
P-BGOH	Beta-Glucan (oat; high viscosity)	P-PGALU	Pectic Galactan (lupin)
P-BGYST	Beta Glucan (yeast; alkali soluble)	P-PGAPT	Pectic Galactan (potato)
P-BGCFA	Beta-Glucan CFA standard	P-PGACT	Polygalacturonic Acid (PGA)
P-MWBGS	Beta-Glucan MW standard	P-PULLN	Pullulan
P-BLDX	Beta-Limit Dextrin (10 g)	P-PULLBH	Pullulan (NaBH₄ reduced)
P-BLDX50	Beta-Limit Dextrin (50 g)	P-RHAMI	Rhamnogalacturonan I (potato)
P-CMC4M	Carboxymethyl Cellulose 4M	P-RHAGN	Rhamnogalacturonan (soy bean)
P-CHITIN	Chitin (colloidal) ^{NEW}	P-SCLER	Scleroglucan ^{NEW}
P-CHITOSAN	Chitosan ^{NEW}	P-XYGLN	Xyloglucan (tamarind)
P-CURDL	Curdlan	P-XYLNBE	Xylan (Beechwood; purified) ^{NEW}
P-CMCUR	CM-Curdlan		

Megazyme

EQUIPMENT

78 Setting New Standards in Test Technology

TRA

Assay Kits

EQUIPMENT

Megazyme provides a number of equipment items for use with its diagnostic applications. The wine industry in particular is well catered for with a range of spectrophotometers, from the MegaquantTM Meter which is suitable for any home brewer right up to the fully automated Chemwell[®] 2910 which is sufficient for a large winery or wine analysis laboratory.

Cat. No. D-CHEM2910

- Suitable for large wineries / laboratories
- Automated assay formats (200 tests per hour)
- Pre-programmed with Megazyme test settings
- Full range of tests available
- Simple assay procedures

ChemWell®2910

Cat. No. D-CHEMT

- Suitable for medium wineries / laboratories
- Automated assay formats (100 tests per hour)
- Pre-programmed with Megazyme test settings
- Full range of tests available
- Simple assay procedures

Cat. No. D-STATFAX

- Suitable for small wineries / laboratories
- Manual assay formats
- Pre-programmed with Megazyme test settings
- Full range of tests available
- Simplified data analysis
- Reagent stability > 2 years

Stat Fax® 4500

Cat. No. D-FRGLMQ or D-LMALMQ

- Small and portable
- Simple to use
- Compatible with K-FRGLMQ and K-LMALMQ
- Extremely affordable

Assay Kits

Cat. No.	Product	Cat. No.	Product
	EQUIPMENT		COFACTORS & STAINS
D-CHEM2910	ChemWell [®] 2910 Automated EIA & Chemistry	C-ATP	Adenosine 5'-triphosphate
	Analyser ^{NEW}	C-CLFR	Calcofluor fluorescent stain
D-CHEMT	ChemWell®-T Automated Chemistry Analyser ^{NEW}	C-COA500	Coenzyme A (trilithium salt)
D-STATFAX	Stat Fax [®] 4500 Chemistry Analyser	C-NAD	β-Nicotinamide adenine di-nucleotide
	(Spectrophotometer) ^{NEW}	C-NADP	β -Nicotinamide adenine di-nucleotide phosphate
D-SFTUBE	Tubes for Stat Fax [®] 4500 Chemistry Analyser ^{NEW}	C-NADH	$\beta\text{-Nicotinamide}$ adenine di-nucleotide reduced salt
D-FRGLMQ	MegaQuant™ Meter plus D-Fructose &		
	D-Glucose Reagents		BUFFERS
D-LMALMQ	MegaQuant™ Meter plus L-Malic Acid	B-BISTRIS250	BIS-TRIS Buffer Salt
	Reagents	B-CAPS200	CAPS Buffer Salt
D-MQTUB	Tubes for MegaQuant™ Meter (24 tubes)	B-CAPSO250	CAPSO Buffer Salt
D-IBMKIII	Megazyme Incubation Bath MK III	B-GLYGLY250	Glycylglycine Buffer Salt
D-INTDFB	Water Bath for Integrated Total Dietary Fibre	B-HEPES250	HEPES Buffer Salt
	Procedure	B-MES250	MES Monohydrate Buffer Salt
		B-MOPS250	MOPS Buffer Salt
	BOOK	B-PIPES250	PIPES Buffer Salt
D-ADFTB	Advanced Dietary Fibre Technology Book	B-TRIS500	TRIS Buffer Salt
	GENERAL CHEMICALS		LECTINS
G-AMBOH	Amberlite FPA OH ⁻ Ion Exchange Resin	L-CONA	Concanavalin A
G-AMBH	Ambersep 200 H ⁺ Ion Exchange Resin		
G-CELITE	Celite		
G-LCYST200	L-Cysteine Hydrochloride Monohydrate		

Setting New Standards in Test Technology

www.megazyme.com

t + 353 1 286 1220 e info@megazyme.com

w www.megazyme.com

Megazyme also has a team of International Distributors in over 45 countries. Contact details can be found online at www.megazyme.com

	e	•	*			Art a		
Albania	Algeria	Argentina	Australia	Austria	Belgium	Bosnia And Herzegovina	Brazil	Bulgaria
*	*	*1			Ũ	10		
Canada	Chile	China	Croatia	Czech Republic	Ecuador	Egypt	Estonia	Finland
			۲			*****		
France	Germany	Hungary	India	Italy	Japan	Kosovo	Latvia	Lithuania
		۲	*	*	***	٩		
Luxembourg	Macedonia	Mexico	Montenegro	Morocco	New Zealand	Peru	Poland	Romania
	<u> </u>	+			- <u>186</u>	+	*	
Russia	Serbia	Slovak Republic	Slovenia	South Korea	Spain	Switzerland	Taiwan	Thailand
©	C *							

Megazyme, Bray Business Park, Bray, Co.Wicklow, A98 YV29, Ireland.

T + 353 1 286 1220

Megazyme Inc., 55 East Monroe Street, Suite 3800 21 st Floor, Chicago, Illinois, 60603, USA.

T 312 212 4361

E cs@megazyme.com

ISO 9001:2008 Registered

www.megazyme.com

Tunisia

Turkey

USA

Cover image hand-painted by Lisa McCleary. Imccleary2@gmail.com mcc-art.tumblr.com

Lisa M'Cleany

100

50

Meganinell

Lange and a Mil

Mitten

Keny-y-man

Which i a

Pr-I HILL

(III)

Megazyme NGRATED TDE KIL D-Sorbitol (dry) - 12 g - 15 g - 15 d D-Sotpitol (dr.) - 15 d - 15 d

Megazyme MEGRATED TOF

+0 6mi

Protease MmL, 350 Tyrosine Units Store at 4°C or -20°C

store at 4°C or 20 C

mt. 350 Tyrosine Unit

Protease

EGRATED TOF

Megazyme

- ALTON

